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n interesting approach to wusing noisy
Aintermediate-scale quantum (NISQ) de-

vices is hybrid classical-quantum machine
learning (QML). In these methods, classical proces-
sors handle optimisation and large-scale computation,
while quantum hardware is devoted to tasks like
feature mapping, nonlinear transformations, or ker-
nel evaluation. Practical near-term demonstrations
are made possible by this division of labour, which
also mitigates existing hardware restrictions. In
specialised fields like molecular modelling, materials
discovery, and small-sample learning issues, recent
advancements in variational quantum circuits, hybrid
neural networks, and quantum kernel techniques
have produced promising outcomes. However, scala-
bility and wider applicability are still hampered by
enduring issues including noise, barren plateaus, and
the expense of repeated measurements. Long-term de-
velopments will require fault tolerance, logical qubits,
and established software infrastructures, whereas
near-term success depends on noise-aware algorithm
design, repeatable experimental benchmarks, and
enhanced error-mitigation strategies. When taken as
a whole, these advancements show a viable path to
achieving quantum advantage in machine learning.
Quanta 2026; 15: 1-12.
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1 Introduction

From being largely a theoretical idea, quantum computing
is now a quickly evolving experimental technology that
has the potential to resolve issues that are still computa-
tionally unfeasible for classical systems. The evolution of
scalable, fault-tolerant quantum algorithms is, however,
hampered by several issues with the current generation of
noisy intermediate-scale quantum (NISQ) devices, such
as short coherence times, imperfect gate fidelities, and
limited qubit availability, as shown by John Preskill [1]]
and further discussed by Marco Cerezo et al. [2]. Hy-
brid classical-quantum machine learning (QML) has be-
come a useful approach to tackle these issues. Under
this paradigm, conventional resources handle optimisa-
tion and large-scale data processing, whereas quantum
processors are responsible for tasks like feature encoding,
nonlinear mappings, or kernel evaluations. With today's
hardware, this division of labour enables researchers to
investigate significant quantum advantages, as demon-
strated by S. Thanasilp et al. [3] and Y. Gujju et al. [4].
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The terrain of hybrid QML is defined by a number
of methodological approaches. While quantum kernel
techniques take advantage of high-dimensional Hilbert
space representations to improve small-data classifica-
tion problems, variational quantum circuits (VQCs) and
quantum-—classical neural networks provide parameter
optimisation using classical training loops as shown by
Marcello Benedetti et al. [5]]. Hybrid models are utilized
to estimate molecular properties, improve diagnostic out-
comes under limited data scenarios, and refine portfo-
lio strategies in application areas such as computational
chemistry, financial modelling, and healthcare analytics.
In these domains, such techniques have already shown
promise, as discussed by R. Prajapati and B. Prajapati [6].

Scalability is nevertheless hampered by practical con-
straints, despite these positive developments. The
high cost of measurement, noise sensitivity, and barren
plateaus in optimisation landscapes continue to be ma-
jor challenges [2}(7]. Both algorithmic enhancements
and collaboration with developments in quantum infor-
mation science are necessary to overcome these problems.
The ability of noise-resilient protocols such as quantum
key distribution (QKD) to provide dependable perfor-
mance in flawed hardware environments is demonstrated
by perspectives from related domains, including quan-
tum cryptography and quantum entropy research [8,9].
It is anticipated that QML research will advance more
quickly if similar concepts of error prevention, effective
benchmarking, and hardware-aware design are applied.

In the near future, hybrid approaches are generally
regarded as the most practical way to achieve quantum
advantage in applied machine learning. Hybrid QML
creates a workable balance between theoretical goals and
engineering constraints by using NISQ devices just for
certain subroutines and leaving large-scale optimisation
to traditional processors.

By utilising quantum mechanical principles, quantum
computing offers an alternative to traditional digital com-
putation and presents a new method of information pro-
cessing. Quantum bits, or qubits, are different from ordi-
nary bits in that they can exist through a superposition,
indicating that they can concurrently represent a mixture
of both states, unlike traditional bits that are limited to
binary values of 0 or 1. Because of this unique prop-
erty, quantum systems can store and work with far more
datasets than classical systems [[10].

Entanglement, in which qubits become interconnected
to the point where the state of one instantly affects the
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state of other, even though they are separated by great
distances, is an equally significant concept. Numerous
quantum computer activities and encryption methods rely
on these quantum correlations, which surpass the classical
assumption of locality [11H13].

Quantum circuits, which are structured collections of
quantum gates, are used to carry out quantum processes.
Qubit states can be changed coherently and probabilis-
tically using gates like Hadamard, Pauli-X, and CNOT.
Similar to logic gates in classical systems, these gates
serve as the fundamental units of quantum algorithms,
although they are governed by distinct mathematical and
physical principles [14].

The NISQ era is the term utilised to explain contem-
porary quantum systems. This phrase describes devices
with a limited quantity of qubits (usually tens to hun-
dreds) that are prone to operational noise and defects
because full-scale error correction is not present. For
certain specialised applications, NISQ devices can still
show advantages over classical systems in spite of these
limitations, particularly when combined with classical
processors in hybrid computational models [1]].

The development of quantum-assisted machine learn-
ing solutions is made possible by the mixture of the phe-
nomena of superposition, entanglement, quantum gate
operations and the current technological status of NISQ
devices.

Creating algorithms that allow systems to see patterns
and make data-driven judgements without the need for ex-
plicitly written instructions is known as machine learning
(ML), a key field within artificial intelligence. The three
primary classifications that machine learning techniques
fall under are supervised learning, unsupervised learning,
and reinforcement learning [15].

In supervised learning, models are constructed using
datasets that have both input characteristics and corre-
sponding output labels. Identifying a generalizable link
between inputs and precise outputs is the objective. In
this area, support vector machines, decision trees, and
neural networks are common techniques [[16].

However, unsupervised learning methods use unla-
belled datasets. The objective of these approaches is
to identify underlying structures or clusters in the data.
Algorithms like k-means clustering and principal compo-
nent analysis (PCA) are commonly used in these types of
tasks [17]].

Reinforcement learning takes a different approach by
letting an autonomous agent learn by interacting with
its environment. By getting feedback in the form of in-
centives or penalties, the agent progressively enhances

January 2026 | Volume 15 | Page 2


http://dx.doi.org/10.12743/quanta.94

its operations to maximise long-term performance. This
learning paradigm works particularly well when sequen-
tial control and decision-making are required [/18].

The computational efficiency and scalability of tradi-
tional machine learning algorithms are becoming increas-
ingly problematic, despite their notable success in a range
of application domains. As data volume and complex-
ity increase especially with the advent of deep learning
models, so does the demand for substantial computa-
tional resources. Due to these constraints, researchers are
exploring other approaches, such as quantum-enhanced
machine learning, which may be able to alleviate some
of the constraints in conventional techniques [5].

In order to create computational models that, under some
conditions, might outperform conventional methods, a
new multidisciplinary discipline known as Quantum Ma-
chine Learning (QML) blends machine learning and quan-
tum computing. Purely quantum algorithms and mixed
classical-quantum procedures are the two primary ap-
proaches in QML. Hybrid techniques are the most widely
used and researched due to the constraints of current tech-
nology, particularly during the NISQ period.

Quantum machine learning (QML) includes algorithmic
frameworks in which quantum computers help with learn-
ing tasks that are typically performed by classical systems.
Particularly in high-dimensional or probabilistic spaces,
these algorithms may utilize quantum phenomena like
superposition and entanglement to perform computations
or transformations that are challenging for conventional
systems [/1]]. Hardware from the NISQ era is particularly
well-suited for hybrid models, which include quantum cir-
cuits in traditional machine learning processes. In these
systems, classical components handle tasks like data man-
agement and parameter tuning, while quantum processors
carry out specialised subroutines [[19].

Fully quantum QML is defined as end-to-end learning
pipelines fully implemented on quantum hardware. These
models handle data encoding, model training, and infer-
ence using quantum resources. However, this type of
QML requires fault-tolerant quantum devices, which are
still in their development stage and not yet commonly
available.
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Conversely, hybrid QML blends the advantages of
both classical and quantum computing. Here, param-
eterised quantum circuits (PQCs), quantum neural net-
works (QNNs), and quantum kernel techniques are used
in classical optimisation frameworks [20]. Recent em-
pirical evaluations have investigated hybrid architectures,
including quantum convolutional neural networks (QC-
NNs), quantum-adapted ResNet models, and Quanvolu-
tion layers, with promising results for tasks like image
recognition [21]]. A comparative summary of these two
QML paradigms is shown in Table

By reducing quantum circuit depth and offloading com-
putationally intensive portions to classical processors,
hybrid models complement existing NISQ hardware limi-
tations [19]]. These architectures have demonstrated ben-
eficial parameter efficiency when compared to their tra-
ditional equivalents, using fewer adjustable parameters
to occasionally achieve competitive accuracy [22]]. Fur-
thermore, especially in situations with low data or heavy
noise, quantum kernel approaches can transfer data into
higher-dimensional Hilbert spaces, enabling more pow-
erful separation limits than classical support vector ma-
chines (SVMs) [23]].

Despite their potential, hybrid QML approaches provide
certain difficulties. As circuit depth increases, gradient-
based training methods become inefficient due to a com-
mon problem known as the barren plateau phenomenon,
where the optimisation landscape flattens out [19]]. More-
over, noise, decoherence, and restricted qubit fidelity in
NISQ devices limit the overall reliability and model com-
plexity [[19]. Other practical challenges include the over-
head of quantum data encoding, integration with tradi-
tional infrastructure, and increased computing complex-

ity.

Variational quantum circuits (VQCs), a family of parame-
terised quantum circuits that are particularly well-suited
to the constraints of the NISQ era, are the foundation of
many hybrid quantum—classical algorithms. In a typical
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Table 1: Comparison between Fully Quantum QML and Hybrid QML

Feature Fully Quantum QML

Hybrid QML

Hardware Requirements | Fault-tolerant quantum

NISQ devices + classical computer

Feasibility (2025) Experimental / future Actively used
Training Type Entirely quantum Quantum + classical optimization
Application Status Limited Image classification, NLP, etc.

VQC procedure, a quantum circuit with parameters that
are adjustable is configured, and its output is tracked to
evaluate a cost function, and the parameters are adjusted
using a traditional optimisation approach. Repeating this
method iteratively allows quantum devices to perform cer-
tain computational subroutines while enabling classical
computers to adjust parameters [24}25]].

The typical hybrid optimization cycle utilized in varia-
tional quantum algorithms is shown in Fig.[l} A param-
eterized quantum circuit made up of rotation and entan-
gling gates first encodes classical input data into quantum
states. A classical optimizer evaluates the measurement
results and iteratively modifies the circuit parameters to

Classical Data
X1, X2, «ovy Xn

Data Encoding
(Angle / Amplitude)

Variational Quantum Circuit
(Parameterized Ansatz)
* Rotation Gates (0)
e Entangling Gates

Measurement (Z), (X)
(Expectation Values) Parameter

Update ( 6)

Classical Optimizer (Loss
Evaluation & Gradient
Update)

Figure 1: VQC training workflow.
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minimize a task-specific cost function. This closed-loop
interaction limits circuit depth while facilitating efficient
training on NISQ-era hardware.

Layers of single- and two-qubit gates typically make up
a VQC architecture, with rotation angles and other gate
settings being handled as learnable parameters. The cir-
cuit design, or ansatz, could be hardware-efficient, such as
the one made to fit the connectivity of a specific quantum
device, or problem-inspired, such as the unitary coupled-
cluster ansatz frequently used in quantum chemistry. The
ansatz selection has a significant impact on the expres-
sive power and trainability of the circuit; more expressive
circuits can capture complex quantum states but may be
more challenging to tune [[25}[26].

Examples of VQCs that are widely recognised include
the Variational Quantum Eigensolver (VQE) and the
Quantum Approximate Optimisation Algorithm (QAOA).
With VQE, the ground-state energy of quantum systems
is approximated by reducing energy readings over pa-
rameterised states [24]. In contrast, QAOA addresses
combinatorial optimisation problems by mixing unitaries
and alternating between problem-specific processes. Its
settings are changed to get nearly ideal results [27]].

Despite their potential, VQCs have many challenges. A
major issue is the barren plateau phenomenon, which oc-
curs when gradients vanish and learning is impeded when
the optimisation terrain for deeper circuits becomes nearly
flat [28L/29]]. The errors caused by noise, decoherence,
and low qubit fidelity in current NISQ devices can also
impair accuracy. These algorithms likewise require many
repeated measurements, or shots, for estimating cost func-
tions with sufficient accuracy [25,26]]. Careful ansatz
selection, noise-mitigation techniques, classical-quantum
co-design methodologies, and sophisticated optimisers
like the quantum natural gradient can all help to increase
performance [30]].

VQCs are essentially a versatile and flexible frame-
work for computation that is strengthened by quantum
mechanics. Progress in reducing noise, breaking through
barren plateaus, and creating architectures that strike a
compromise between expressiveness and trainability will
be crucial to their practical impact [25}30].
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Hybrid quantum neural networks (HQNNSs), also known
as quantum—classical neural networks (Q-CNNs), com-
bine quantum processing layers with traditional neural
network components. In these kinds of architectures, one
or more quantum modules are integrated into a classical
network to carry out specific tasks, usually data inference
or embedding, while the classical portion handles pre-
treatment, post processing, and parameter optimization.

In hybrid networks, quantum layers are frequently used
as a feature mapping stage, encoding conventional in-
put vectors into quantum states. Widely used methods
include amplitude encoding, rotation (angle) encoding,
and domain-specific embedding schemes, the latter of
which frequently uses entangling gates to identify correla-
tions in the data [31}/32]. These embeddings can produce
feature representations that could be difficult to acquire
using classical approaches by projecting inputs into the
exponentially vast Hilbert space of quantum states. Quan-
tum kernel techniques, which have been experimentally
verified on superconducting quantum hardware, are based
on this idea [31]].

In an alternative configuration, quantum circuits are used
to infer the model. In this instance, a parameterised
quantum circuit processes the embedded state, and the
measurement results are incorporated into later conven-
tional layers, like softmax functions or fully connected
layers, for the final decision. This arrangement enables
the quantum block to function as a trainable nonlinear
transformation and is comparable to a quantum filter or
neuron [22,(33,/34]].

Traditional gradient-based optimisation is typically used
to train hybrid designs from start to finish. Specialised
software toolkits make this integration seamless. For ex-
ample, PennyLane offers differentiable quantum program-
ming including automated differentiation via quantum
circuits, enabling simultaneous optimisation of both quan-
tum and conventional parameters [35,36]. TensorFlow
Quantum provides similar capability, allowing quantum
circuits to be incorporated as native layers and trained
alongside classical elements in the TensorFlow/Keras
ecosystem [37]]. Both frameworks interact with both sim-
ulators and real-world quantum devices, and they allow
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gradient estimation techniques including the parameter-
shift rule and finite-difference methods.

On small-scale benchmarks, it has been shown that hy-
brid quantum—classical networks can sometimes meet
or surpass classical baselines while requiring far fewer
trainable parameters. This parameter efficiency could be
helpful when interpretability or compactness are impor-
tant considerations [22]. Thus far, applications have been
explored in domain-specific applications like quantum
chemistry and communication systems, as well as en-
tity resolution and picture classification, with particularly
promising results in scenarios with little training data.

Hybrid QNNs have several drawbacks in spite of their
promise. The substantial resources required to encode
conventional inputs into quantum states may sometimes
offset the expected performance gains. Moreover, current
NISQ-era technology's low qubit counts, decoherence
issues, and finite sampling rates restrict the depth and
complexity of the model. Convergence in hybrid designs
may also be slowed or stopped by issues known from
variational quantum circuits, such as barren plateaus and
noise-induced training difficulties [32,36,/38]. Due to
the computational cost of simulating vast quantum layers
during development, scalability requires low-dimensional
encodings and hardware-efficient designs.

In essence, quantum—classical neural networks pro-
vide a workable means of fusing quantum processing
with modern deep learning frameworks. Platforms like
PennyLane and TensorFlow Quantum facilitate the imple-
mentation of such models, and initial research in certain
domains yields encouraging findings. For widespread
practical use, however, advancements in co-design ap-
proaches, noise reduction, and data encoding techniques
that optimise the complementarity among quantum layers
and their classical equivalents will be required.

One important category of hybrid quantum—classical algo-
rithms is represented by quantum kernel methods, which
convert classical inputs into quantum states and use a
quantum device to compute their pairwise inner products,
or kernels. By incorporating these kernels into conven-
tional kernel-based models, like support vector machines
(SVMs) or kernel ridge regression, classical algorithms
can then use quantum feature spaces that are hard to re-
produce on classical hardware [|31}/32].
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Classical Data
X1, X2, ..., Xn

Quantum Feature Map
U(x), U(x')
(Data Encoding Circuits)

Quantum State | d(x))

Kernel Evaluation (Measurement)

kix, x) = [{d(x) | d(x)) |

Classical Kernel Model
(SVM / Ridge Regression)

Figure 2: Quantum kernel evaluation workflow.

By encoding classical inputs into quantum states, esti-
mating their overlap using quantum measurements, and
evaluating the resulting kernel classically, quantum kernel
methods compute similarity as shown in Fig. 2]

Typically, a quantum feature map is applied using ei-
ther a parameterised or constant unitary transformation
to encode the input vector x into a n-qubit quantum state.
The fidelity, or other estimators using local measurement
techniques, is then calculated as the correlation between
two inputs [31,/32]]. Once the kernel (Gram) matrix is
obtained, sometimes by repeated quantum measurements,
a classical kernel learner, such as an SVM, is trained to
detect a decision boundary within the implicitly defined
high-dimensional space.

One of the main benefits of quantum kernels is their
expressiveness. Rich representations that achieve class
separability—which is challenging to achieve in classi-
cal feature spaces because the Hilbert space dimension
increases exponentially with the number of qubits—can
be obtained from a well-designed quantum feature map.
In certain theoretical situations, such mappings have been
shown to yield observable distinctions between quantum
and conventional model capabilities [39]]. Another ben-
efit is that kernel-based learning avoids the non-convex
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landscapes usually linked with variational quantum cir-
cuits by maintaining the convex optimisation structure of
conventional techniques.

Despite these benefits, practical study has revealed se-
rious limitations for immediate use. The high sample cost
for accurately estimating kernel values is a key obstacle,
especially if kernel entries are highly concentrated, which
significantly reduces their discriminative potential by tak-
ing on nearly similar values for various inputs [3]]. This
type of concentration can be caused by global measure-
ments, strong entanglement, quantum hardware noise, or
the usage of excessively general or expressive embed-
dings. Analytical and empirical evidence suggests that
these effects can impede generalisation and render the
quantum kernel inefficient if the embedding design is not
carefully considered [3,40].

Many approaches have been developed to address these
problems. Projected (local) kernels and covariant kernels
preserve important discriminatory capabilities while miti-
gating kernel concentration and shot noise sensitivity by
utilising data symmetries or computing similarities across
smaller subsystems [341[]. Another approach is to design
problem-inspired embeddings tailored to the structure of
the dataset to maintain kernel informativeness and pre-
vent exponential concentration [3]. Hybrid techniques, in
which parameterised quantum embeddings are optimised
together with conventional kernel alignment or regularisa-
tion, have also been studied to improve training stability
and generality.

In conclusion, quantum kernel techniques offer a math-
ematically solid way to use quantum state spaces for
supervised learning by fusing quantum embeddings with
well-proven classical algorithms. Their practical efficacy
is largely dependent on embedding decisions, measure-
ment techniques, and hardware noise tolerance, despite
their significant theoretical potential, particularly when
using exponentially large Hilbert spaces. The present
study aims to identify the design tenets and domains
where quantum kernels can provide a real advantage over
classical approaches [3,40,41].

Hybrid quantum—classical models, which incorporate a
quantum component such as a quantum kernel or parame-
terised quantum circuit to augment a conventional classi-
fier, have been thoroughly researched for supervised clas-
sification. Compared to strictly classical models, research
shows that these hybrid systems can produce richer data
representations and, in some benchmark circumstances,
yield better accuracy or lower parameter requirements.
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Quantum layers have been successfully employed as fea-
ture mappers or kernel evaluators in recent experiments
on small-to-medium-sized datasets, with classical layers
handling the final classification [31}32].

Hybrid quantum approaches have also helped reinforce-
ment learning, especially in speeding up particular learn-
ing cycle components. Examples include estimating value
functions, evaluating policies, and encoding probability
distributions using quantum processes. In some situa-
tions, prototype hybrid Quantum Reinforcement Learning
(QRL) agents that have been tested in dynamic contexts
have shown promising improvements in sampling effi-
ciency and adaptation over their classical counterparts.
Performance gains, however, depend on the specific issue
and can be impacted by quantum device noise. One im-
portant area for further research is the incorporation of
quantum subroutines into traditional Q-learning [42].

Since the financial industry frequently works with huge,
high-dimensional datasets and optimization challenges, it
provides a vibrant testing ground for hybrid QML. These
techniques have been used recently in time-series predic-
tion, risk analysis, anomaly identification, and portfolio
optimization. On limited datasets, hybrid models that
make use of generative techniques, quantum kernels, or
variational quantum circuits have demonstrated promis-
ing accuracy and robustness. However, issues with data
encoding, noise resilience, and regulatory compliance
must be resolved for real-world deployment [43,/44]].

Ground-state energy estimation for tiny molecules has
been made possible by hybrid quantum—classical algo-
rithms, most notably the Variational Quantum Eigen-
solver (VQE), which has been at the forefront of near-
term quantum chemistry applications. Recent devel-
opments apply quantum neural networks and quantum-
enhanced generative models to drug discovery tasks such
as conformer generation and molecular property predic-
tion. Although these techniques have shown promise
in proof-of-concept research, hardware constraints and
the requirement for error mitigation still make it difficult
to scale them to surpass classical computational chem-
istry [43].
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When quantum subroutines work on compact,
information-rich data encodings while classical
components handle large-scale optimization and data
handling, hybrid QML performs best across these
domains. Algorithm design must be in line with hardware
capabilities, noise must be managed, and rigorous
benchmarking against robust classical baselines is
essential for real-world deployment success. In order
to translate hybrid QML from lab tests to real-world
applications, the co-design approach in which algorithms,
hardware, and data encoding are cooperatively optimized,
remains essential [[2]46].

The development of quantum machine learning (QML) is
faced by several obstacles, including algorithmic, infras-
tructure, and technological ones. These constraints make
it difficult to achieve a practical quantum advantage and
limit the near-term scalability of QML solutions. Training
bottlenecks in hybrid workflows, limited qubit resources
and imperfect gates, noise and decoherence, and the im-
maturity of the software—hardware ecosystem are the four
main problem areas that are identified (Table [2)).

Table 2: Challenging Areas

Noise and decoherence

Limited qubit count and gate fidelity

Hybrid optimization bottlenecks

Software and hardware limitations

Noise sources such as qubit dephasing, relaxation,
crosstalk, and readout errors are inherent to devices in the
NISQ era. These impacts weaken quantum states, distort
measurement data, and ultimately affect algorithm per-
formance. In addition to decreasing output fidelity, noise
also affects the optimization landscape, leading to phe-
nomena like variational objectives and kernels suppress-
ing useful signals or noise-induced barren plateaus [2,28].
Research indicates that hardware design has a major effect
on noise characteristics, and many mitigation strategies
have been put forth, such as error-aware transpilation, ran-
domized compilation, and zero-noise extrapolation. Even
though these techniques can increase accuracy in some
situations, they frequently call for additional processing
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power and still do not achieve completely fault-tolerant
performance [47,{48]].

Tens to several hundred qubits are typically available in
modern quantum processors, and two-qubit gates have
non-negligible error rates. Because cumulative gate
faults cause performance to deteriorate exponentially
with depth, the usable computing capacity is dependent
on both the feasible circuit depth and the number of
qubits [49]]. Techniques like depth minimization, optimal
qubit routing, and hardware-efficient ansatz have been
spurred by this constraint. However, before large-scale,
error-corrected computations are feasible, many target
applications require either much improved gate reliability
or significantly bigger qubit arrays [494|50].

Beyond the optimization difficulties inherent in quantum
technology, hybrid quantum—classical training presents
additional difficulties. Variational quantum algorithms
(VQAs) may face extreme sensitivity to hyperparameter
settings, high sampling (shot) needs for accurate gradient
estimation, and barren plateaus [29,51]]. These plateaus
could be caused by global cost function definitions, ran-
dom circuit initializations, or even hardware noise. Lo-
calized cost functions, domain-informed ansatz creation,
incremental layer training, and parameter initialization
heuristics are some of the solutions proposed in recent re-
search. These techniques may decrease expressivity and
necessitate problem-specific adjustment, even though they
can increase trainability [51]. Moreover, when executed
on distant quantum computers, shot noise dramatically
increases the number of quantum circuit evaluations ev-
ery optimization step, leading to a rise in runtime and
resource consumption [29].

The QML ecosystem as a whole is currently developing
in its early phases. The lack of commonly recognized
benchmarks, inadequate transpilers, hardware variability
with mismatched native gate sets, and limited support for
automated workflow orchestration among conventional
high-performance computing (HPC) and quantum back-
ends are some of the current obstacles [52,)53]]. Because
developers frequently have to manually adapt code to
several SDKs, including Qiskit, Cirq, PennyLane, and
TensorFlow Quantum, these problems impede repeatabil-
ity and delay down experimentation. In order to facilitate
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long-term adoption in academic and industrial settings, re-
cent studies highlight the necessity of strong middleware,
improved software engineering standards, and standard-
ized evaluation procedures [52}54].

Simultaneous advancements in quantum hardware, error-
correcting methods, algorithm design, and supporting
software ecosystems will influence the development of
quantum machine learning (QML). While NISQ-era de-
velopments and hybrid algorithm tactics are expected
to drive advancements in the near future, the long-term
progress hinges on the development of large-scale, fault-
tolerant quantum computers.

Many of the present restrictions on QML, including re-
stricted circuit depth, unstable multi-round training, and
susceptibility to noise during data encoding, may be ad-
dressed via fault-tolerant quantum computing (FTQC).
Before full-scale FTQC is available, research on transi-
tional approaches, also known as Early Fault-Tolerant
Quantum Computing (EFTQC), suggests systems with a
limited amount of logical qubits and enhanced decod-
ing techniques that can enable practical QML activi-
ties [[19,55]]. The necessity of effective decoders, scalable
error-correction protocols, and QML algorithms tailored
for logical-qubit architectures are highlighted in strategic
roadmaps [56]. Increasingly computationally intensive
jobs, such as deep quantum neural networks, large-scale
quantum kernel assessments, and sophisticated quantum
generative models, may eventually be made possible by
FTQC. Nevertheless, this will require solving major ar-
chitectural challenges with hardware stability, decoder
efficiency, and resource overhead [|55,/56].

Realistic goals at the current NISQ stage focus on creating
algorithms that respect hardware limitations, generating
repeatable performance standards, and proving concrete
advantages over traditional approaches for specific chal-
lenges:

(1) producing reliable, hardware-based proof that hy-
brid QML models outperform robust classical baselines;

(2) creating noise-tolerant circuit ansatz and measure-
ment schemes that maximize information extraction; and

(3) improving error-mitigation techniques, calibration
procedures, and sampling effectiveness to lower experi-
mental expenses are among the top priorities [4,/19].
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Early claims should be interpreted with caution, ac-
cording to the literature, which suggests that thorough
performance comparisons and problem settings that make
it evident when NISQ devices could offer real benefits [4].
Instead of general speedups, NISQ-era advancements are
anticipated to produce specific, domain-focused advances
in areas like materials research, chemistry, and small-
sample categorization.

The bridge between theoretical methods and actual quan-
tum devices is provided by software frameworks. With
features like high-level quantum layer abstractions, differ-
entiable circuit construction for gradient-based optimiza-
tion, and simple deployment to both simulators and real
hardware, contemporary toolkits like Qiskit, PennyLane,
Cirq, and TensorFlow Quantum are moving toward fully
integrated hybrid-classical workflows [57]]. Two main
development trends are identified by recent surveys:

(1) a greater focus on hardware-specific compilation
and execution, which aims to minimize circuit depth and
align with native gate sets; and

(2) better orchestration for hybrid workloads, which in-
cludes cross-platform compatibility, cloud-native schedul-
ing, and scalable integration with traditional machine
learning pipelines [S7.[58].

These software tooling developments are essential for
speeding up the adoption of QML and enabling sophisti-
cated, real-world applications, especially in the areas of
standardizing benchmarks, guaranteeing reproducibility,
and abstracting away hardware-specific variations.

The conceptual underpinnings and practical applications
of hybrid classical-quantum machine learning (QML)
have been examined in this study, with an emphasis on
variational quantum circuits, quantum-classical neural
network models, and quantum kernel-based techniques.
The existing literature reveals a number of recurring
themes. First, by allocating quantum processors to spe-
cific tasks—Ilike feature encoding, nonlinear transforma-
tions, or cost function evaluation—and using classical
systems for data preprocessing and optimization, hybrid
approaches provide a workable way to take advantage of
the capabilities of current noisy intermediate-scale quan-
tum (NISQ) devices. Second, despite the field's progress
from early theoretical concepts to experimental valida-
tion and benchmark studies, their efficacy for general-
purpose applications is still hampered by enduring issues
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like noise sensitivity, optimization challenges like barren
plateaus, and high measurement overheads [[1H3]].

In the immediate term, hybrid QML is still the most
useful method for acquiring quantum advantage in ap-
plied machine learning contexts. Without requiring com-
pletely fault-tolerant hardware, targeted performance im-
provements in areas such as computational chemistry,
low-data classification, and specialized optimization tasks
have been demonstrated through the use of problem-
specific ansitze, careful control over circuit depth, and the
integration of quantum kernels or compact parameterized
quantum blocks with classical models [2,/4]. However,
recent studies indicate that expected benefits can occasion-
ally fail to materialize in practice because of issues like
hardware noise and kernel concentration, underscoring
the significance of rigorous feature map selection, effec-
tive measurement procedures, and reliable benchmarking
against robust classical baselines [3,/39].

Future progress will need concerted efforts on multiple
fronts. The development of hardware-aware algorithms,
transparent and repeatable benchmarking processes, and
enhanced error mitigation and sampling optimisation tech-
niques should be the main priorities in order to maximise
NISQ-era performance in the near future. The addition of
logical qubits, improved decoding efficiency, and scalable
error correction will enable deeper and more expressive
QML designs in the long run. In order to improve re-
peatability, reduce implementation complexity, and make
it easier to transfer algorithms to different hardware plat-
forms, software ecosystems such as Qiskit, PennyLane,
Cirq, and associated middleware will need to be devel-
oped further [2].

The promise of hybrid QML as a transformative tech-
nology ultimately depends on reliable, verifiable evidence
of its advantages in actual problem settings. The ability
of hybrid QML to yield reliable, domain-relevant results
will determine whether it becomes an essential part of
machine learning procedures or remains a primarily ex-
ploratory research area.

[1] J. Preskill. Quantum computing in the NISQ era and
beyond. Quantum 2018; 2:79. |doi:10.22331/q-
2018-08-06-79.

[2] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, P. J.
Coles. Challenges and opportunities in quantum
machine learning. Nature Computational Science
2022; 2(9):567-576. |doi:10.1038/s43588-022
00311-3|

January 2026 | Volume 15| Page 9


http://doi.org/10.22331/q-2018-08-06-79
http://doi.org/10.22331/q-2018-08-06-79
http://doi.org/10.1038/s43588-022-00311-3
http://doi.org/10.1038/s43588-022-00311-3
http://dx.doi.org/10.12743/quanta.94

(3]

[10]

[11]

[12]

S. Thanasilp, S. Wang, M. Cerezo, Z. Holmes. Ex-
ponential concentration in quantum kernel meth-
ods. Nature Communications 2024; 15(1):5200.
doi:10.1038/s41467-024-49287-w.

Y. Gujju, A. Matsuo, R. Raymond. Quantum ma-
chine learning on near-term quantum devices: Cur-
rent state of supervised and unsupervised tech-
niques for real-world applications. Physical Re-
view Applied 2024; 21(6):067001. |doi:10.1103/
PhysRevApplied.21.067001.

M. Benedetti, E. Lloyd, S. Sack, M. Fiorentini. Pa-
rameterized quantum circuits as machine learning
models. Quantum Science and Technology 2019;
4(4):043001. doi:10.1088/2058-9565/ab4ebb.

R. B. Prajapati, B. B. Prajapati. Harnessing quan-
tum uncertainty: Exploring the security landscape
of quantum true random number generators. in:
N. K. Chaubey, N. Chaubey (Eds.), Harnessing
Quantum Cryptography for Next-Generation Se-
curity Solutions. IGI Global Scientific Publishing,
Hershey, Pennsylvania, 2025. pp. 125-152. doi:
10.4018/979-8-3693-9220-1.ch005.

B. B. Prajapati, N. K. Chaubey. Realizing the quan-
tum relative entropy of two noisy states using
the Hudson—Parthasarathy equations. International
Journal of Advanced Computer Science and Ap-
plications 2023; 14(2):648—655. doi: 10.14569/
1jacsa.2023.0140275.

B. B. Prajapati, N. K. Chaubey. Anatomy of quan-
tum key distribution protocol: A comprehensive
analysis. Journal of Tianjin University Science and
Technology 2021; 54(9):5k6pf. doi:10.17605/
osf.io/5ké6pf.

N. K. Chaubey, B. B. Prajapati. Quantum Cryptog-
raphy and the Future of Cyber Security. IGI Global,
Hershey, Pennsylvania, 2020. |[doi:10.4018/978-
1-7998-2253-0.

M. A. Nielsen, I. L. Chuang. Quantum Computation
and Quantum Information. 10th Edition. Cambridge
University Press, Cambridge, 2010. doi:10.1017/
cbo9780511976667.

A. Einstein, B. Y. Podolsky, N. Rosen. Can quantum-
mechanical description of physical reality be consid-
ered complete?. Physical Review 1935; 47(10):777—
780. doi:10.1103/PhysRev.47.777.

J. S. Bell. On the Einstein Podolsky Rosen para-
dox. Physics 1964; 1(3):195-200. doi:10.1103/
PhysicsPhysiqueFizika.1.195.

Quanta | DOI:|10.12743/quanta.94

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. S. Bell. On the problem of hidden vari-
ables in quantum mechanics. Reviews of Modern
Physics 1966; 38(3):447-452. |doi:10.1103/
RevModPhys.38.447.

D. Deutsch. Quantum theory, the Church-Turing
principle and the universal quantum computer. Pro-
ceedings of the Royal Society of London A: Mathe-
matical and Physical Sciences 1985; 400(1818):97—
117./doi:10.1098/rspa.1985.0070.

T. M. Mitchell. Machine Learning. McGraw-Hill,
New York, 1997.

C. M. Bishop. Pattern Recognition and Ma-
chine Learning. Information Science and Statistics.
Springer, New York, 2006.

I. T. Jolliffe. Principal Component Analysis. 2nd
Edition. Springer, New York, 2002.

R. S. Sutton, A. G. Barto. Reinforcement Learn-
ing: An Introduction. 2nd Edition. MIT Press, Cam-
bridge, Massachusetts, 2018.

S. Thudumu, J. Fisher, H. Du. Supervised quantum
machine learning: A future outlook from qubits to
enterprise applications 2025; arXiv:2505.24765.

K. Zaman, T. Ahmed, M. A. Hanif, A. Marchi-
sio, M. Shafique. A comparative analysis of hybrid-
quantum classical neural networks 2024; arXiv:
2402.10540.

Y. Wang, J. Liu. A comprehensive review of
quantum machine learning: from NISQ to fault
tolerance. Reports on Progress in Physics 2024;
87(11):116402. |larXiv:2401.11351. doi:10.
1088/1361-6633/ad7£69.

L. Bischof, S. Teodoropol, R. M. Fiichslin,
K. Stockinger. Hybrid quantum neural networks
show strongly reduced need for free parame-
ters in entity matching. Scientific Reports 2025;
15(1):4318. doi:10.1038/s41598-025-88177+
Z.

D. T. Chang. Parameterized quantum circuits with
quantum kernels for machine learning: A hybrid
quantum-classical approach 2022; arXiv:2209,
14449.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung,
X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L.
O’Brien. A variational eigenvalue solver on a pho-
tonic quantum processor. Nature Communications

2014; 5(1):4213. doi:10.1038/ncomms5213.

January 2026 | Volume 15 | Page 10


http://doi.org/10.1038/s41467-024-49287-w
http://doi.org/10.1103/PhysRevApplied.21.067001
http://doi.org/10.1103/PhysRevApplied.21.067001
http://doi.org/10.1088/2058-9565/ab4eb5
http://doi.org/10.4018/979-8-3693-9220-1.ch005
http://doi.org/10.4018/979-8-3693-9220-1.ch005
http://doi.org/10.14569/ijacsa.2023.0140275
http://doi.org/10.14569/ijacsa.2023.0140275
http://doi.org/10.17605/osf.io/5k6pf
http://doi.org/10.17605/osf.io/5k6pf
http://doi.org/10.4018/978-1-7998-2253-0
http://doi.org/10.4018/978-1-7998-2253-0
http://doi.org/10.1017/cbo9780511976667
http://doi.org/10.1017/cbo9780511976667
http://doi.org/10.1103/PhysRev.47.777
http://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://doi.org/10.1103/RevModPhys.38.447
http://doi.org/10.1103/RevModPhys.38.447
http://doi.org/10.1098/rspa.1985.0070
http://arxiv.org/abs/2505.24765
http://arxiv.org/abs/2402.10540
http://arxiv.org/abs/2402.10540
http://arxiv.org/abs/2401.11351
http://doi.org/10.1088/1361-6633/ad7f69
http://doi.org/10.1088/1361-6633/ad7f69
http://doi.org/10.1038/s41598-025-88177-z
http://doi.org/10.1038/s41598-025-88177-z
http://arxiv.org/abs/2209.14449
http://arxiv.org/abs/2209.14449
http://doi.org/10.1038/ncomms5213
http://dx.doi.org/10.12743/quanta.94

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Ben-
jamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai,
X. Yuan, L. Cincio, P. J. Coles. Variational quantum
algorithms. Nature Reviews Physics 2021; 3(9):625-
644./doi:10.1038/s42254-021-00348-9.

S. Sim, P. D. Johnson, A. Aspuru-Guzik. Express-
ibility and entangling capability of parameterized
quantum circuits for hybrid quantum—classical al-
gorithms. Advanced Quantum Technologies 2019;
2(12):1900070. |doi:10.1002/qute.201900070.

E. Farhi, J. Goldstone, S. Gutmann. A quantum
approximate optimization algorithm 2014; arXiv:
1411.4028.

J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Bab-
bush, H. Neven. Barren plateaus in quantum neu-
ral network training landscapes. Nature Communi-
cations 2018; 9(1):4812. doi:10.1038/s41467-
018-07090-4.

S. Wang, E. Fontana, M. Cerezo, K. Sharma,
A. Sone, L. Cincio, P. J. Coles. Noise-induced
barren plateaus in variational quantum algorithms.
Nature Communications 2021; 12(1):6961. |doi:
10.1038/s41467-021-27045-6.

J. Stokes, J. Izaac, N. Killoran, G. Carleo. Quantum
natural gradient. Quantum 2020; 4:269. |doi:10.
22331/9-2020-05-25-269.

V. Havlicek, A. D. Cércoles, K. Temme, A. W.
Harrow, A. Kandala, J. M. Chow, J. M. Gam-
betta. Supervised learning with quantum-enhanced
feature spaces. Nature 2019; 567(7747):209-212.
doi:10.1038/s41586-019-0980-2.

M. Schuld, N. Killoran. Quantum machine learn-
ing in feature Hilbert spaces. Physical Review
Letters 2019; 122(4):040504. |doi:10.1103/
PhysRevLett.122.040504.

D. D. Georgiev, S. K. Kolev, E. Cohen, J. F. Glaze-
brook. Computational capacity of pyramidal neu-
rons in the cerebral cortex. Brain Research 2020;
1748:147069. |[doi:10.1016/j.brainres.2020.
147069.

D. D. Georgiev. Quantum information in neural sys-
tems. Symmetry 2021; 13(5):773. doi:16.3390/
sym13050773.

V. Dunjko, H. J. Briegel. Machine learning and ar-
tificial intelligence in the quantum domain: a re-
view of recent progress. Reports on Progress in
Physics 2018; 81(7):074001. |doi:10.1088/1361-
6633/aab406.

Quanta | DOI:|10.12743/quanta.94

[36]

[37]

[38]

[39]

[40]

[41]

V. Bergholm, J. Izaac, M. Schuld, C. Gogolin,
S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje,
B. AkashNarayanan, A. Asadi, J. M. Arrazola,
U. Azad, S. Banning, C. Blank, T. R. Bromley,
B. A. Cordier, J. Ceroni, A. Delgado, O. Di Matteo,
A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill,
A. Ljaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain,
E. Jiang, A. Khandelwal, K. Kottmann, R. A.
Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan,
J. J. Meyer, J. A. Montafiez Barrera, R. Moyard,
Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi,
C.-Y. Park, D. Polatajko, N. Quesada, C. Roberts,
N. S4, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh,
I. Strandberg, J. Soni, A. Szdva, S. Thabet, R. A.
Vargas-Herndndez, T. Vincent, N. Vitucci, M. We-
ber, D. Wierichs, R. Wiersema, M. Willmann,
V. Wong, S. Zhang, N. Killoran. PennyLane: Au-
tomatic differentiation of hybrid quantum-classical
computations 2018; arXiv:1811.04968.

M. Broughton, G. Verdon, T. McCourt, A. J. Mar-
tinez, J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati,
M. Y. Niu, A. Zlokapa, E. Peters, O. Lockwood,
A. Skolik, S. Jerbi, V. Dunjko, M. Leib, M. Streif,
D. V. Dollen, H. Chen, S. Cao, R. Wiersema, H.-
Y. Huang, J. R. McClean, R. Babbush, S. Boixo,
D. Bacon, A. K. Ho, H. Neven, M. Mohseni. Tensor-
Flow Quantum: A software framework for quantum
machine learning 2020; arXiv:2003.02989.

J. M. Arrazola, S. Jahangiri, A. Delgado, J. Ceroni,
J. Izaac, A. Széava, U. Azad, R. A. Lang, Z. Niu,
0. Di Matteo, R. Moyard, J. Soni, M. Schuld, R. A.
Vargas-Herndndez, T. Tamayo-Mendoza, C. Y.-Y.
Lin, A. Aspuru-Guzik, N. Killoran. Differentiable
quantum computational chemistry with PennyLane
2021; arXiv:2111.09967.

H.-Y. Huang, R. Kueng, J. Preskill. Information-
theoretic bounds on quantum advantage in ma-
chine learning. Physical Review Letters 2021;
126(19):190505. |doi:10.1103/PhysRevLett.
126.190505.

J. Schnabel, M. Roth. Quantum kernel methods un-
der scrutiny: a benchmarking study. Quantum Ma-
chine Intelligence 2025; 7(1):58. doi:10.1007/
s42484-025-00273-5.

M. Schuld, I. Sinayskiy, F. Petruccione. The
quest for a quantum neural network. Quantum
Information Processing 2014; 13(11):2567-2586.
arXiv:1408.7005. doi:10.1007/s11128-014
0809-38.

January 2026 | Volume 15| Page 11


http://doi.org/10.1038/s42254-021-00348-9
http://doi.org/10.1002/qute.201900070
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1411.4028
http://doi.org/10.1038/s41467-018-07090-4
http://doi.org/10.1038/s41467-018-07090-4
http://doi.org/10.1038/s41467-021-27045-6
http://doi.org/10.1038/s41467-021-27045-6
http://doi.org/10.22331/q-2020-05-25-269
http://doi.org/10.22331/q-2020-05-25-269
http://doi.org/10.1038/s41586-019-0980-2
http://doi.org/10.1103/PhysRevLett.122.040504
http://doi.org/10.1103/PhysRevLett.122.040504
http://doi.org/10.1016/j.brainres.2020.147069
http://doi.org/10.1016/j.brainres.2020.147069
http://doi.org/10.3390/sym13050773
http://doi.org/10.3390/sym13050773
http://doi.org/10.1088/1361-6633/aab406
http://doi.org/10.1088/1361-6633/aab406
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/2003.02989
http://arxiv.org/abs/2111.09967
http://doi.org/10.1103/PhysRevLett.126.190505
http://doi.org/10.1103/PhysRevLett.126.190505
http://doi.org/10.1007/s42484-025-00273-5
http://doi.org/10.1007/s42484-025-00273-5
http://arxiv.org/abs/1408.7005
http://doi.org/10.1007/s11128-014-0809-8
http://doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.12743/quanta.94

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

A. Sannia, A. Giordano, N. L. Gullo, C. Mastroianni,
F. Plastina. A hybrid classical-quantum approach
to speed-up Q-learning. Scientific Reports 2023;
13(1):3913. doi:10.1038/s41598-023-30990-
5.

P. Mironowicz, A. Shenoy-Hejamadi, A. Mandarino,
A. E. Yilmaz, T. Ankenbrand. Applications of quan-
tum machine learning for quantitative finance 2024;
arXiv:2405.10119.

R. Orts, S. Mugel, E. Lizaso. Quantum computing
for finance: Overview and prospects. Reviews in
Physics 2019; 4:100028. doi:10.1016/j.revip.
2019.100028.

J. R. McClean, J. Romero, R. Babbush, A. Aspuru-
Guzik. The theory of variational hybrid quantum—
classical algorithms. New Journal of Physics 2016;
18(2):023023. doi:10.1088/1367-2630/18/2/
023023.

Y. Liu, S. Arunachalam, K. Temme. A rigorous and
robust quantum speed-up in supervised machine
learning. Nature Physics 2021; 17(9):1013-1017.
doi:10.1038/s41567-021-01287-z.

B. Khanal, P. Rivas, A. Sanjel, K. Sooksatra,
E. Quevedo, A. Rodriguez. Generalization error
bound for quantum machine learning in NISQ
era—a survey. Quantum Machine Intelligence 2024;
6(2):90. doi:10.1007/s42484-024-00204-w.

P. Garcia-Molina, A. Martin, M. Garcia de An-
doin, M. Sanz. Mitigating noise in digital and
digital-analog quantum computation. Communi-
cations Physics 2024; 7(1):321. doi:10.1038/
s42005-024-01812-5!

J. Kalloor, M. Weiden, E. Younis, J. Kubiatowicz,
B. De Jong, C. Iancu. Quantum hardware roofline:
Evaluating the impact of gate expressivity on quan-
tum processor design 2024; arXiv:2403.00132.

S. S. Gill, O. Cetinkaya, S. Marrone, D. Claudino,
D. Haunschild, L. Schlote, H. Wu, C. Ottaviani,
X. Liu, S. P. Machupalli, K. Kaur, P. Arora, J. Liu,
A. Farouk, H. H. Song, S. Uhlig, K. Ramamoha-
narao. Quantum computing: vision and challenges.
in: R. Buyya, S. S. Gill (Eds.), Quantum Computing.
Morgan Kaufmann, 2025. Ch. 2. pp. 1942. doi:
10.1016/B978-0-443-29096-1.00008-8|

Quanta | DOI:|10.12743/quanta.94

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Larocca, S. Thanasilp, S. Wang, K. Sharma,
J. Biamonte, P. J. Coles, L. Cincio, J. R. McClean,
Z. Holmes, M. Cerezo. Barren plateaus in varia-
tional quantum computing. Nature Reviews Physics
2025;7(4):174-189. |doi:10.1038/s42254-025+
00813-9.

J. M. Murillo, J. Garcia-Alonso, E. Moguel,
J. Barzen, F. Leymann, S. Ali, T. Yue, P. Arcaini,
R. Pérez-Castillo, 1. Garcia-Rodriguez de Guzman,
M. Piattini, A. Ruiz-Cortés, A. Brogi, J. Zhao,
A. Miranskyy, M. Wimmer. Quantum software en-
gineering: Roadmap and challenges ahead. ACM
Transactions on Software Engineering and Method-
ology 2025; 34(5):154.|doi:10.1145/3712002.

P. Mantha, F. J. Kiwit, N. Saurabh, S. Jha,
A. Luckow. Pilot-Quantum: A quantum-HPC mid-
dleware for resource, workload and task manage-
ment 2024; arXiv:2412.18519.

E. Desdentado, C. Calero, M. A. Moraga, F. Garcia.
Quantum computing software solutions, technolo-
gies, evaluation and limitations: a systematic map-
ping study. Computing 2025; 107(5):110. |doi:
10.1007/s00607-025-01459-2|

A. Katabarwa, K. Gratsea, A. Caesura, P. D.
Johnson. Early fault-tolerant quantum computing.
PRX Quantum 2024; 5(2):020101. doi:10.1103/
PRXQuantum.5.020101.

J. Bausch, A. W. Senior, F. J. H. Heras, T. Edlich,
A. Davies, M. Newman, C. Jones, K. Satzinger,
M. Y. Niu, S. Blackwell, G. Holland, D. Kafri,
J. Atalaya, C. Gidney, D. Hassabis, S. Boixo,
H. Neven, P. Kohli. Learning high-accuracy error
decoding for quantum processors. Nature 2024;
635(8040):834-840. doi:10.1038/s41586-024-
08148-8.

T. Farajollahpour. Quantum algorithm software
for condensed matter physics 2025; |arXiv:2506.
09308.

V. Stirbu, O. Kinanen, M. Haghparast, T. Mikko-
nen. Qubernetes: Towards a unified cloud-native
execution platform for hybrid classic-quantum
computing. Information and Software Technol-
0gy 2024;175:107529. doi:10.1016/j.1infsof.
2024.107529.

January 2026 | Volume 15| Page 12


http://doi.org/10.1038/s41598-023-30990-5
http://doi.org/10.1038/s41598-023-30990-5
http://arxiv.org/abs/2405.10119
http://doi.org/10.1016/j.revip.2019.100028
http://doi.org/10.1016/j.revip.2019.100028
http://doi.org/10.1088/1367-2630/18/2/023023
http://doi.org/10.1088/1367-2630/18/2/023023
http://doi.org/10.1038/s41567-021-01287-z
http://doi.org/10.1007/s42484-024-00204-w
http://doi.org/10.1038/s42005-024-01812-5
http://doi.org/10.1038/s42005-024-01812-5
http://arxiv.org/abs/2403.00132
http://doi.org/10.1016/B978-0-443-29096-1.00008-8
http://doi.org/10.1016/B978-0-443-29096-1.00008-8
http://doi.org/10.1038/s42254-025-00813-9
http://doi.org/10.1038/s42254-025-00813-9
http://doi.org/10.1145/3712002
http://arxiv.org/abs/2412.18519
http://doi.org/10.1007/s00607-025-01459-2
http://doi.org/10.1007/s00607-025-01459-2
http://doi.org/10.1103/PRXQuantum.5.020101
http://doi.org/10.1103/PRXQuantum.5.020101
http://doi.org/10.1038/s41586-024-08148-8
http://doi.org/10.1038/s41586-024-08148-8
http://arxiv.org/abs/2506.09308
http://arxiv.org/abs/2506.09308
http://doi.org/10.1016/j.infsof.2024.107529
http://doi.org/10.1016/j.infsof.2024.107529
http://dx.doi.org/10.12743/quanta.94

	Introduction
	Background
	Quantum Computing Basics
	Machine Learning Basics

	QML Basics
	What Is QML?
	Types of QML: Fully Quantum vs. Hybrid Models
	Advantages and Challenges of Hybrid QML
	Advantages
	Challenges


	Architectures for Hybrid Classical–Quantum Learning
	Variational Quantum Circuits (VQCs)
	Quantum-Classical Neural Networks
	Using quantum layers to embed data
	Using quantum layers for inference
	Differentiability and hybrid training
	Practical benefits and recent findings
	Challenges and design factors

	Quantum Kernel Methods

	Hybrid QML Applications
	Quantum-Enhanced Classification
	Quantum Reinforcement Learning
	Applications in Finance
	Chemistry and Drug Discovery
	Outlook and Implementation Considerations

	Current Challenges
	Noise and decoherence
	Limited qubit count and gate fidelity
	Hybrid optimization bottlenecks
	Software and hardware limitations (integration and tooling)

	Future Outlook
	Prospects for Fault-Tolerant QML
	Near-Term Goals with NISQ Devices
	Software and Development Ecosystem Trends

	Conclusion

