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space H with dim H = n, we define a geomet-

ric algebra G(H) with dim [G(H)] = 2". The
algebra G(H) is a Hilbert space that contains H as a
subspace. We interpret the unit vectors of H as states
of individual fermions of the same type and G(H) as a
fermion quantum field whose unit vectors represent
states of collections of interacting fermions. We dis-
cuss creation operators on G(H) and provide their ma-
trix representations. Evolution operators provided by
self-adjoint Hamiltonians on H and G(H) are consid-
ered. Boson-Fermion quantum fields are constructed.
Extensions of operators from H to G(H) are studied.
Finally, we present a generalization of our work to
infinite dimensional separable Hilbert spaces.
Quanta 2025; 14: 48-65.

Corresponding to a finite dimensional Hilbert

1 Basic Definitions and Preliminary
Results

Unless stated otherwise, all vector spaces are complex
and finite dimensional. Although the next three lemmas
are known, we include their proofs for completeness.

Lemma 1. Let V be a vector space with basis
fisfos-eos fn. Fora,b e Vwitha = Y aif;, b = X Bif:
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a;,Bi € C,i =1,2,...,n, define {(a,b) = ), @;5;. Then
(V, (s, +)) is a complex inner product space.

Proof. If a € C, then
(a,ab) = Z @i(ab) = a Z @:b; = ala, b)
(@by= Y ap= Y ap=ba)
Ifc=)vifi,thena+b =Y (a; +B;)f; and
(c.a+by = Filar+p) = Y Fiait Y Vi = (c,a)+(c,b)
We also have

(@ay= ) @ai= )l 20

and (a,a) =0 ifand only if o; = 0,i = 1,2,...,n, which
is equivalent to a = 0. m|

It follows that the vector space V of Lemma [I]is a
Hilbert space with orthonormal basis fi, f2,..., f,. We
denote the set of linear operators on V by L(V). If
T € L(V)then Tf; = zk:Tkjfk’ Tyj € Cforallk,j=

1,2,...,n. We say that the matrix [T] = [Tkj] represents
the operator 7'. Notice that

(foT1) = <fk, 2 Ti,-ﬁ> = D il f = Ty

so we can find T}; explicity.

Lemma 2. (i) If [Tkj] represents 7', then a[Tkj], a €
C, represents aT. (ii) If [Tkj] represents 7' and [S kj]
represents S, then [T kit Sk j] represents 7 + S and the
usual matrix product [Tk j] [S k j] represents 7'S .
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Proof. (i) This follows from
(@T)f; = aTfi= ) (@T)fe
k

forall j=1,2,...,n. (ii) Since

T+8)fi=Tfi+Sf;= ZTkjfk+ZSkjfk = Z(Tkj+Skj)fk
% % %

we have [Tk i+ Sk j] represents 7 + S . Since

(TS =TS f)=T [Z Sk,,-fk] = > SuThi= D S (Z T,-kf,-) = > TuSkifi = ) ATV, i
k k k i ik i

we have that [Tk j] [S k j] represents 7'S. m]
If T € L(V) we define the adjoint T* € L(V) by (T*a, b) = {a, Tb) for every a,b € V.

Lemma 3. S = T* if and only if (S f;, fi) = (f;. Tfi) forall j.k=1,2,....n.

Proof. If S = T7, then clearly <Sfj,fk> = <fj, Tfk> for all j,k = 1,2,...,n. Conversely, suppose <Sfj, fk>
(fTfi)forall Lk =1,2,...,n.1fa = ¥ a;f;.b = ¥ Befi. then

Saby=(S Y aifi ) Bufi) = D @GBS i fi) = D @B S Th)
.k Jok

J
= (Z a;fj T Z,kak> = (a,Tb) = (T*a,b)
soS =T i

We say T € L(V) is self-adjoint if T = T*. It follows from Lemma [3| that T is self-adjoint if and only if
<Tfj,fk> = <fj, Tfk> for all j,k = 1,2,...,n. We denote the set of self-adjoint operators on V by Lg (V). If
S, T e Ls(V),wewriteS <Tif{a,Sa) <{a,Ta)foralla e Vandcall T € Lg(V) positive if T > 0 where 0 is the
zero operator. We call T € Lg(V) an effect if 0 < T < I where [ is the identity operator and denote the set of effects
by &V). An operator T € Lg(V) is a projection if T = T?. It is well-known that projections are effects and we call
projections sharp effects. The trace of T € L(V)istr(T) = . < T fj> We call p € Lg(V) a state if p > 0 and
tr (o) = 1. The set of states is denoted by S(V). Finally, an operator T € L(V) is unitary if TT* = I or equivalently
T*=T7"

We think of a Hilbert space as a mathematical structure that describes a quantum mechanical system [[1H3]]. In
order to understand why this is so, we need to discuss states and effects on V. A state p € S(V) corresponds to
the initial condition of a quantum system. An effect A € (V) corresponds to a yes—no(true-false) measurement or
experiment on the quantum system [3-5]]. If A results in the outcome yes when it is measured, we say that A occurs
and otherwise, it does not occur. It can be shown that 0 < tr (pA) < 1 and we call tr (pA) the probability that A occurs
in the state p. An observable on V is a finite set of effects A = {A,: x € Q4} where >, A, =1 [4,5]. We call Q4 the

XGQA
outcome set of A and when A is measured and the resulting outcome x is observed, we say that the effect A, occurs.

If A is measured and the system is in state p, we call Pﬁ(x) = tr (pAy) the probability distribution of A. Since

PA(x) = tr(pAy) =tr|p Y Ay|l=tr(pl)=tr(p) =1
Y, pio = 3 wipn =l 3

xeQy x€Qp xeQy

we see that Pﬁ is indeed a probability measure. There is a close connection between observables and self-adjoint
operators. If A = {A,: x € Q,} is an observable and {1,: x € Q4} C Rthen B = },cq, 4:A, is a self-adjoint operator.
Conversely, if B € L(V) then by the spectral theorem [4}5]], there exist a finite number of sharp effects A; and real
numbers A;,i = 1,2,...,msuch that >, A; = I and B = Y ;A;. Hence, A = {A;: i = 1,2,...,m} is an observable.
There is also a close connection between self-adjoint operators and the dynamics of a quantum system. This is
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because T € L(V) is unitary if and only if there exists an A € Lg(V) such that T = ¢4 [4,/5]. If A corresponds to the
Hamiltonian of a quantum system then the unitary group U, = "4, t = [0, c0), describes the dynamics of the system,
where 7 is the time.

A state p is pure if it is a one-dimensional projection. In this case, there is a unit vector ¢ € V such that
pla) = (Y, ay) for every a € E(V) and we write p = p,. Since any state p is an affine combination of pure states
(0 =X A4ipi, i 20,3 A; = 1, p;, pure) we shall mainly consider only pure states.

We now show that if H is a complex Hilbert space that describes an individual fermion, then the geometric algebra
G(H) over H results in a fermion quantum field theory. Our definition of G(H) differs from the usual algebra in
the sense that G(H) is complex while the usual algebra is real [[6-14]. Let dim H = n and let ey, e, ..., e, be an
orthonormal basis for H. The geometric algebra G(H) over H is the complex homogeneous, associative, distribution
algebra containing H that has the basis consisting of the elements 1 € C

feri=1,2,....n}fewe; i j=12,....i< j]

{eiejek: Lak=12,....,ni<j<k}

[erer-- ey, e1ere3---e,, ...,e1e2-en_fey)
elep-re, =1
n

where eje; - - -¢; - - - e, means that ¢; is not present. There is one additional axiom for G(H), namely, if u = ) cjej €
j=1

n
H, then uu = 3, c? eC.
Jj=1

n
Ifu = _Zl cjej, we define ii =
j:

T'M:

cjej. Itis easy to check that
1

(au + Bv)” = @it + o

forall o, € C. If v = }  d;e;, we obtain

n
uv+vu:(u+v)(u+v)—uu—vv:Z(cj+dj)2—Zc§— d>=2 cjd; = 2it, v)
=1 j=1 j=1 =1

Hence, @i L v if and only if uv = —ovu. It also follows that if j # &, then

<éj,ek> = <ej,ek> =0
so ejer = —eye;. Notice that uu = (it,u) and if u = e; + ie; we have the unusual situation that u # 0 but uu = 0.

n
Finally, we have that uu = '21 c? forall u € H if and only if eje; = 1 and e e, = —eye; for all j # k.
j:

An element of the form e;, e, - ey by F s, is said to have grade j and grade (1) = 0. The set of linear
combinations of grade j basis elements is a vector subspace of G(H) called the grade j subspace and is denoted
G(H);. By definition, 0 is considered to be every grade level because we want subspaces. Thus, G(H)o ~ G(H), ~ C
and G(H); = H. We see that

n n!
dimG(H); = ( ) =
SR Y/ AN ICEY
Hence, dim G(H)y = dim G(H),, = 1 and by the binomial formula we have

dimG(H) = " dimG(H); = >’ (’;) —(1+1)=2"
=0

J=0
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For Ji, = {j1, j2,. .., i} with j; < jo < -+ < ji, ji €{1,2,...,n} we define eg = 1
ey = ejiej, e € GIH);

and define J = {0,J;: k=1,2,...,n}. We make G(H) into a Hilbert space by declaring {¢;: J € J} to be an
orthonormal basis for G(H). This follows from the next corollary of Lemma

Corollary 4. (G(H), -, +)) is a Hilbert space with orthonormal basis {e,: J € J} and inner product {a, b) = ), @,8,
Jeg
Wherea = Z ;5ey, b = Z B_]e].
Jeg JegJ
As before, we denote the set of linear operators on G(H) by L(G (H)) and the discussion of Section 1 on operators
applies. In particular, if T € L (G(H)), then Te; = Y, Tex, T, € C for all K, J € J and the matrix [T] = [Tky]

represents 7. Moreover, Lemmas @] and E] hold. Sincng(H) is an algebra that is also a Hilbert space, we call G(H) a
Hilbert algebra.

We think of G(H) as a quantum field theory describing a finite number of fermions of the same type. A basis multi-
vector v = ¢;, ¢;, - - - €;, represents a state for k fermions of the same type (k electrons or k protons or k neutrons,. .. ).
The actual state is p, but we shall frequently abuse the notation and call any unit vector a € G(H) a state when we
really mean p,. The Pauli exclusion principle postulates that two fermions of the same type cannot exist in the same
state. This holds in the G(H) framework because if they are in the same state ¢; € H, then the resulting state for the
pair would be e;e; = 1 which we call the vacuum state. In this sense, the two particles annihilate each other. It is
interesting that three particles in the same state e;e;e; reduces to a single particle in the state e;.

We call the grade 0 subspace G(H)o = C the vacuum subspace, the grade 1 subspace G(H); = H the one-fermion
subspace,. . ., the grade j subspace G(H); the j-fermion subspace. The reason for this is that G(H)( corresponds to
the states in which no fermion is present,..., G(H); the states in which j fermions are present. In general, we call ¢;
a one-fermion state,. . . e; e;, - - - €;; a j-fermion state. We also have anti-fermions (anti-electrons, anti-protons,.. . ).
We call &; = ey ---¢; - - - e, an anti-fermion state,

(eiej)N:el"'ei"'ej"'en

a 2-anti-fermion state, etc. Notice that I = 7 and we call G(H), ~ C the anti-vacuum subspace. A fermion and its
corresponding anti-fermion annihilate each other to form the anti-vacuum state J.

Ifa e G(H);. |lall = 1, we call p, a j-fermion state and otherwise p, is a combination fermion state. In general, if
a € G(H) with ||la|| = 1 and A € E(G(H)), the probability that A occurs in the state p, becomes

Py, (A) = tr(pad) = ) (ei,paAe)) = ) (eir(a, Aep)a)

icJ ieJ
= Z (a,Ae;)ej,a) = Z (Aa, e;){e;, a)
i€ed i€g

= (Aa,a) = (a,Aa)
Ifa=3qajejand @ = (@;: j € J) is the complex vector, we have

Ppa(A) = <Z a/jej,A Z a/kek> = Z 5jak<ej,Aek>

jeg keg JkeJ

= (|42 )

If B € G(H) we define B € L(G(H)) by Ba = Ba. Notice that (aB) = @B, (A + B) = A + B and (AB) = A B for all
A, B € G(H). A particular example is the creation operator for a fermion in the state e; given by

Cei(a) = ei(a) = eia

The following lemma will be useful.
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Lemma 5. eijey---ejejep e = 1 ifj= 1,4,5,8,9, 12,13,... and
eley---ejejey---e;=—1if j=2,3,6,7,10,11,14,15,...

Proof. Clearly eje; = 1 and we have ejeyejer = —ezejejer = —erey = —1. Continuing, we obtain
ejerezerere; = erezere; = —1
by the previous case. For j = 6 we have
€1€263€465€661€263€4€565 = —e2e3e465¢2e3€4€65 = e3eqesezeses = —1
by the previous case. For j = 7 we have
elep---ejejep---e7 =exey---eqereycre7 = —1
by the previous case. This pattern continues. For j = 4, we have
elerezeqe|erezes = —erezeqeneses = 1
by the j = 3 case. For j = 5, we have
€1€2€3€4€5€1€2€36465 = €2€3€64€65€62€63€64€65 = 1
by the previous case. Again the pattern continues. |
Theorem 6. (i) The creation operator Cy, is self-adjoint and unitary.
(i) For J = {ji,j2...,js} € 9, the operator e, is unitary and it is self-adjoint if and only if r €
{1,4,5,8,9,12,13,.. .},
Proof. (i) For J,K € J we have (ex, C,,e;) = 0 unless ex = e;e; and if ex = +eje;, then (e, e;je;) = +1. Similarly
(Cq ek, €5y = 0 unless, e; = +ejeq and if e, = *e;jey, then (C,.ex, ;) = £1. Also, ex = e;e, if and only if e, = e;ex and
ex = —e;e; if and only if e, = —e;ex. We conclude that
<eK7 Ce,-eJ> = <Ce,-€1<9 eJ>
for every e;, ex so C,, = C;, and C,, is self-adjoint. To show that C,, is unitary, we have
C,.Ceey = eieje; = ¢

for every J € J. Hence, C.,C;, = C.,C,, = I so C,, is unitary. (ii) The operator ¢, is unitary because e, =
C;,Cj, ---Cj, and the product of unitary operators is unitary. We have that ¢; is self-adjoint if and only if

CjCjp--Cj, =(CjyCj -+ Cj)" = C;C; -+ Cj =Cj.Cji - C,
This equality holds if and only if
(CjiCjp+-Cj)*=CjiCjy-+-Cj,C;Cp - Cjy = 1
The result follows from Lemma[3 O

Example 1. Letting H = C?, the algebra G(H) is 4-dimensional with basis

1 grade 0
el e grade 1
I =ejep; grade?2
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The creation operators C,,, C,, are given by C, (1) = ey, C.,(e1) = 1, C,,(e2) = I, Co((X) = €2 and C,,(1) = €3,
Ce,(e1) = —ejep = -1, Cp,(e2) = 1, C,, () = —ey. The corresponding matrices are

0100 0 0 1 O
1 00O 0 0 0 -1
M[C€1] 0 O O 1 M[Cez] - 1 0 O O
0010 0 -1 0 O
It is clear that these matrices are unitary and self-adjoint. The operator Tis given by I(1) = 1, I(e)) = —eo,

7(@2) =ey, f([ ) = —1. The corresponding matrix is

0 0 0 -1

= 0 0 1 O
M[]]_ 0 -1 0 O
1 0 0 O

We conclude that 7 is unitary but not self-adjoint as shown in Theorem @ii).u

Example 2. Letting H = C>, the algebra G(H) is 8-dimensional with basis

1 grade 0
el e es grade 1
e|ep ejes eres grade 2
ejere3 =1 grade 3

The creation operator C,, is given by C, (1) = e1, C, (e1) = 1, C, (e2) = erez, C, (e3) = eres3, C, (e1€2) = €3,
Ce (e1e3) = e3, Ce (€2e3) = 1, C, (1) = eze3. The corresponding matrix is

0 1 0000 0 O
10000000
0000T1000
00000100
MICal=10 01000 0 0
00010000
0000000 1
0 00000 1 0

which is unitary and self-adjoint. Also, M [C,,], M [C,,] are similar and are unitary, self-adjoint. The operator
erey satisfies: ejex(1) = ejea, erex(er) = —e, erea(er) = ey, erexes) = 1, eres(erer) = —1, erexleres) = —ezes,
e1ex(ere3) = ere3, ejex(J) = —e3. The corresponding matrix is

0 0 00 -1 0 0 0]

00 100 0 0 0

0 -1 00 0 0 0 0
oo 00 0 0o 0 -1
Mleel=11 o 00 0 0 0 o0
00 00 0 0 1 0

00 00 0 -10 0

0 0 01 0 0 0 0]

We conclude that eje; is unitary but not self-adjoint as shown in Theorem Ekii).l]
We now consider the eigenvalues and eigenvectors of C,,.

Theorem 7. The eigenvalues of C,, are 1. The normalized eigenvectors for 1 are %(eJ + e;e;) where i ¢ J and the

normalized eigenvectors for —1 are + e;je;) where i ¢ J and the normalized eigenvectors for —1 are \/Li(eJ —eje;)

% (e
where i ¢ J. There are 2"~ normalized eigenvectors for eigenvalue 1 and 2"~! normalized eigenvectors for eigenvalue
-1.
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Proof. Since C,, is self-adjoint and unitary, the eigenvalues of C,, are real and have absolute value 1. Hence, the
eigenvalues A satisfy 4 = 1. If i ¢ J we have

C. (e + eje)) = eje; + ejeie; = eje; + e

Hence, %(eJ + ejey) is a normalized eigenvector for eigenvalue 1 for all J with i ¢ J. Notice, there are 2"~! such
eigenvectors. If i ¢ J we have

Ce(e; — ejey) = eje; — ejeiey = eje; — ey = —(e; — ejey)

Hence, %(eJ — eje;) is a normalized eigenvector for eigenvalue —1 for all J with i ¢ J. Again, there are 2"~! such
eigenvectors. Since dim [G(H)] = 2" we have found all the eigenvectors. of C,, ]

Notice that when i ¢ J we have
(e; + eje;, e; — ejey) = (e, e;) — ey, eiey) + {eje;, e;) — (eiey, eje;) = 0
as it should be because eigenvectors for different eigenvalues are orthogonal.

Example 3. According to Theorem if H = C? the eigenvectors of C,, in G(H) are as follows. The J € J for
which 1 ¢ J are J = {0} and J = {2}. The resulting eigenvectors for eigenvalue 1 are

Hrab =3 +e). e +erer)
and the eigenvectors for eigenvalue —1 are

e =5 -e). e —ere0)

The corresponding matrix representations for these vectors are
1 0 1 0
1|1 1 jof 1 |-1 110
o (G NG KA A
0 1 0 -1

Applying M [C,, ] to these vector representations verify they are eigenvectors of C,, for eigenvalues +1. We next
consider C,,. The J € J for which 2 ¢ J are J = {0} and J = {1}. The resulting eigenvectors for eigenvalue 1 are

Flteah =5 +e). sl +ee) = 4o —ee) = 51— 1)

and the eigenvectors for eigenvalue -1 are

1 0 1 0
110 1|1 110 1 |1
V2117 V20 v2 -1 210
0 -1 0 1
Applying M [C,, ] to these vector representations verify they are eigenvectors of C,, for eigenvalues +1. O

Example 4. We now consider the matrix representations for the eigenvectors of C,, in G(H) where H = C3. The
J € g for which 1 ¢ J are J = {0}, {2}, {3}, {2, 3} the resulting eigenvectors for eigenvalue 1 are

%(1 +e1), %(62 +ere), \/%(63 +eje3), %(6263 +1)
and the eigenvectors for eigenvalue —1 are

%(1 —-ey), \/%(62 —-ejey), %5(63 - eje3), %(6263 -1)
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The corresponding matrix representations for these vectors are

1] 0] 0] 0]

1 0 0 0

0 1 0 0

1ol 1 fo| 11l 1o

V2|01 V211" V2|0 v2]0

0 0 1 0

0 0 0 1

0] 0] 0] 1]
1] 0] 0] 0]
-1 0 0 0
0 1 0 0
1lo| t|of 1|1t 1]o0
Glol vEl-1 valo| V5|0
0 0 -1 0

0 0 0 1
0 0 0] 1)

As in Example 3, these vectors form an orthonormal basis for G(H). Applying M [C,, | to these vector representations
verify they are eigenvectors of C,, for eigenvalues +1. Similar results hold for C,, and C,,. m|

The anti-commutant of two operator S, T is
{§, T} =ST+TS

Theorem 8. (i) If e; # e, then {C,,,C,,} = 0. (ii) The eigenvectors %(61 + ejey), \er(ej —ejey), i ¢ J form an
orthonormal basis for G(H).

Proof. (1) This follows from
C., Ceya = Cpe2a = e1e2a = —ezeja = —C,,C,,a

for all a € G(H). (ii) By Theorem[7] there are 2" vectors of this form. Since eigenvectors corresponding to distinct
eigenvalues of self-adjoint operators are orthogonal the first and second types are mutually orthogonal. Since
i ¢ Ji,J2,1f J1 # J, then the two terms ¢;,, ¢;e;, are different than the two terms ey, e;e;,. Hence, vectors of the first
type are orthogonal to other vectors of the first type and similarly for vectors of the second type. It follows that these
vectors form an orthonormal basis for G(H). ]

We now consider the creation operator C,, € Lg (Q(CZ)) in more detail. The operator C,, will be similar. Let
i1, W42 be the normalized eigenvectors corresponding to eigenvalue 1 and _1, ¥, be the normalized eigenvectors
corresponding to eigenvalue —1. Let Py, be the projection onto .. Then

1

Py, 1=, Dy = 3

O O = =

and similarly

1
Py, er =3
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We conclude that

(1 1 0 0

1100

Pra=310 0 0 0

0 0 0 O

In a similar way we have

[0 0 0 O

110 0 0 O

Pro=310 0 1 1

0 0 1 1

The projection onto the eigenspace for eigenvalue 1 becomes
1
1

P+: 0
0

| =

1 0

1 0

0 1

0 1

We consider P, to be the sharp effect that occurs when a fermion in the state e; is created.
Now let Py_, be the projection onto ¢_;. Then

| =

Py 1 =1, 1)1 =

and similarly

-1 0
1{1 0
Pper=zlo| Prea=Pu L=,
0 0
We conclude that
1 -1 0 0
11-1 1 0 0
Poa=310 0 0 0
|0 0 0 O
In a similar way we have
0 0 0 O]
110 0 0 O
Poo=310 0 1 -1
0 0 -1 1
The projection onto the eigenspace for eigenvalue -1 becomes
1 -1 0 O
1{-1 1 0O O
P-=310 0o 1 21
o 0 -1 1

We consider P- to be the sharp effect that occurs when a fermion in the state e; is annihilated. As expected we have
P, + P_ = [. If the system is initially in the vacuum state 1 them the probability that a fermion in the state e; is
created becomes

11 1 0 0]t
1/loj |1 1 0 0}|0

1 _ - —
P(createf1)—(1,P+1>—2<()’0 0 1 1 0>
ol lo o 1 1]lo
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In a similar way we obtain
P!(annihilate e;) = P*!(create e;) = P°' (annihilate e;)
= P®(create e;) = P°2(annihilate 1) = P¥(create e)
= P’ (annihilate e;) = 1/2
More generally, suppose the system is in the state
al + Bey

Jla? + 18P

Then the probability that a fermion in the state e; is created becomes

al [1 1 0 O]fla
1 Bl 11 1 0 of|
W _ _
P(createel)—<¢/,P+¢/>——2(|a|2+|,8|2)<0 1o o 1 1 0>
of 10 0 1 1/]0
al [a+p
:;<ﬁ a+ﬁ>zﬂ
2(la® + 181 2(a* + 18P

01’f 0
0]1 0

In particular, if @ = 8 = 1 we have PY(create e;) = 1
An operator A € Lg (G(C?)) is an e -observable if it has the form

A= /llP(/,H + /12P1/1+2 + /13P¢_1 + /l4P,/,_2

where A1, A2, A3, 44 € R. In particular C,, is an ej-observable with 4} = A, = 1, 43 = A4 = —1. An ej-observable A
has the same eigenvectors as C,, with corresponding eigenvalues A1, A2, 43, A4. Its general form is

A1+A3 A1 — A3 0 0
A—l/ll_/l3 A1 + A3 0 0
2 0 0 /12+/14 /12—/14
0 0 Ay —Ay A+ Ay

If A is measured, its possible outcomes are A;, A7, A3, A4 and when the system is in the state p, its probability
distribution is

Py(A1) = tr(pPy,,),  Pi(A2) = tr(pPy,,)
P(3) = tr(pPy ),  Py(ds) = tr(pPy_,)

We now consider the 8-dimensional Hilbert algebra G(C?). We will establish a pattern that the reader will see
carries over to higher dimensions. As before, we consider the creation operator C,, € Ls (Q(C3 )) and the operators
Ce,, C., will be similar. Let 1,12, ¥13, Y14 be the normalized eigenvectors corresponding to eigenvalue 1 and
Vo1, ¥_0, ¥_3,¥_4 be the normalized eigenvectors corresponding to eigenvalue —1. The corresponding projection
operators become

11000000
11000000
000O0OOO0DPO

Pw+1 =

| =
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0 0 0 0 0O 0 0 O]

00 0O0O0OO0OO0O

1 000

00T1@O0

100 0
0000O0OO OO
00000O0OO
0 00000 0 O

1

0 0 0 0 0 0 0 O]

00 0O0O0OO0OO0O
00 0O0O0OO0OO0O

0001O0T1TQO00O0

0000000 O
0 00000 O O

0 0 0 0 0O 0 0 O]

1

00 0O0O0O01

1

0 00000

110 0 0 0 0 0 0 O
0

~210 0

Pl/’+2

110 0 01 01 0 O
2(0 0 0 0 0 0 0 O

Plﬁ+3

1

500000000

Pl//+4

The projection onto the eigenspace for eigenvalue 1 becomes

P¢+1+P¢+2+Pl//+3+Pl//+4

P+:

The —1 projection operators are

-1 00 0 0 0 0]

[ 1

0 00 O0O00O O

1

0 000 O0 0 Of

| 0

0 0 0 0 0 O O O]

00 0 0 0 O0O0O

1 0 -1 00O
10 0 0 0 0 0 0 O
0

00

-1 1 000
00 0 0 0 O0O0O

210 0O

00 0 0O O O0O00O

o 0 0 0 0 0 0 0
0 00 0 0 0 0O O]

000 O O O OO

000 O O O 00O

1j0 0 0

-1 00

0

1
20 0 0 0 0 0 O O

0

0

1

-1 0
000 0 0 O 00O

000

000 0 0 0 0 O

Yoo =

Pl//—3
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1 :
Pyy=5100 0000 0 0

000000 1 -I

000000 -1 1

The projection for eigenvalue —1is P_ = Py_, + Py, + Py_, + Py _,.

We now briefly consider boson and general boson-fermion quantum field theories. Let K be an m-dimensional Hilbert
space. The corresponding r-boson Hilbert space is the Foch space []1},2]

H=CoKoK’® oK

where K’ = K ® K ® - - - ® K(i factors) and unit vectors in K’ represent states for i bosons. The vacuum space is C
and we see that we have states for O to r bosons. Letting k = dim H we have that

k=l+m+m>+--+m =1+md+m+m>+---+m™)

=l+mk-m)=1+mk-m"

Hence, (m — Dk =m™! —1sok = m,::_lIl. The simplest nontrivial case is m = 2, r = 1, k = 3. We thus have one
boson with two possible basis states by, b, and as we shall see there are three fermions. The next simplest case is
m=2,r=2,k="17.In this case we have two bosons with basis states b, b2, b1 ® by, b; ® b2, b, ® b1, bo ® by and
we shall see there are 7 fermions.

Corresponding to H we have the boson-fermion quantum field G(H). This quantum field has r bosons and

k=dimH = ’”;:_11_1 fermions. As we have seen, G(H) is a Hilbert algebra with dimension 2k We illustrate this
quantum field for the two simple cases mentioned above. In the case m = 2, r = 1, k = 3 we have one boson and three
fermions. The bosons and fermions can interact and G(H) has 23 = 8 basis elements. The Hilbert space H=C@ K
has three basis elements v, b1, b, where v is the boson vacuum state and by, b, are boson states. We write the basis
states for G(H) as
1,0,b1,b2,0by,0b, b1by, T

We interpret 1 as the fermion vacuum state, v is a fermion that has not interacted with a boson, Ei is a fermion that
has interacted with a boson in state b;, i = 1,2, 1_)5,- represents two fermions the first of which does not interact with a
boson and the second interacts with a boson in state b;, i = 1, 2, 5152 represents two fermions where the first interacts
with a boson in state b and the second interacts with a boson in state b,. Finally T = 55152 is the anti-vacuum state.

Of course, the case m = 2, r = 2, k = 7 is much more complicated because we have two bosons and 7 fermions. In
this case G(H) has 27 = 128 basis elements. The basis states for H are v;, by, b, by ® b1, by @ ba, by @ by, by @ b>

and the basis states for G(H) are

1,0,b1,by,b1 ® by, by ®b1,b> @ by

by, 0b2,0(b1 ® by),0(by ® by),0(by ® by), 1(by ® by)
biby, b1(by ® b1), b1(b1 ® by), b1 (b2 @ b1), by (b2 ® by)
by(b1 ® b1), by(b1 ® by), ba(by @ b), ba(by ® by)

(b1 ® b1)(b1 ® b2), (b1 ® b1)(b2 ® by), (b1 ® b1)(b2 ® by)
(b1 ® b2)(by ® by), (b1 ® b2)(b2 ® b2), (b2 ® b1) (b2 ® by)
Ub1b3, b1 (b @ by), ...

b1by(by ® by)(b1 ® ba)(by ® by), ... biba(by ® by)(by ® ba)(by ® by)(by ® by)T
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In this case, we interpret b; ® b; as a fermion that interacts with two bosons both of which in the state b, Zl(bl ®by)
represents two fermions, the first of which interacts with a boson in state b; and the second interacts with two bosons
in the state b; ® by, b1 b> represents three fermions, the first of which interacts with no boson, the second interacts
with a boson in state | and the third interacts with a boson in state b,. Higher order cases get exponentially larger.
For example, the case m = 3, r = 2, k = 13 with two bosons and 13 fermions gives G(H) with 213 = 8,192 basis
elements.

An operator U on G(H) is unitary if and only if there exists a self-adjoint operator A on G(H) such that U = ¢4
where the constant 7 is for convenience and is not necessary [4}/5]. We define the evolution operator U, = e,
where ¢ € [0, co0) represents the time and A is called a Hamiltonian for the system [1,]2]. If ¢ is a state on G(H), then
U.(¢) gives the evolution of ¢ relative to the Hamiltonian A. If A has spectral representation A = }, 1;P;, 4; € R,
then

U, = ™A = emip = cos(mtd;) + isin(mtd ;)| P;
J j R
j j

For example, in G(C?), C,, is self-adjoint and using C,, as the Hamiltonian we have

1 100 1 -1 0 O cos(mt)  isin(mr) 0 0

U, = oimCe @ 1100 N e™i-1 1 0 0 _ isin(zt) cos(mt) 0 0
210 0 1 1 2 {0 0 1 -1 0 0 cos(mt)  isin(nt)
00 1 1 0O 0 -1 1 0 0 isin(nt) cos(mt)

In particular, the states 1, e1, 3, I evolve according to

U,(1) = cos(rmt)1 + i sin(rtt)e;
U,(ey) = isin(nt)1 + cos(rt)e;
U,(e>) = cos(nt)ey + isin(mt) T
U,(T) = isin(nt) L, + cos(nt) T

Another way to view this is to use the fact that C,, is unitary so
C,, = ¢” and apply the Hamiltonian A = —InC,,. Since
In(—1) = ir we have
A=ZInC, = Z ()P, +In(-D)P_] = — () irP_ = P_

s

imtA

Hence, letting U, = ¢”™* we obtain

L+e™ 1-¢™ 0 0

. ; L{1-€™ 1+&™ 0 0

_ imtP_ _ int _ } .
Ur=emm=emP-=31 o 0 1+e™ 1-e™
0 0 1-€™ 1+¢™

In this case, the states 1, e, e3, I evolve according to

U](]) = %(1 +ei7rf)] + %(1 _ eim)el
Uiey) = %(] _eiirt)] + %(1 + eim)el
U[(ez) — %(1 + eim)ez + %(1 _ eim‘)J—

UD) = 30 - e™ey + 1(1 + ™I
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LetA = Py, + APy, + A3Py | + 4Py ,, A; € R be a C,, observable in G(C?). The corresponding evolution
operator is

intA intd
U, t =€ = P W

e . + eim/lz Pl//+2 + eiﬂt/l3 Pl//—l + eim/l4 Pl//_2
1100 0 0 0O 1 -1 0 0 00 0 O
™1 1 0 0f ™0 0 0 0f ™11 1 0 0f ™10 0 0 0
"2 loooo" 2 loo11|T2 o 000 200 1 -1
00 0O 0 0 11 0O 0 0O 00 -1 1
it +e™ s QA _ pintds 0 0
3 1 eim/ll _eiﬂt/13 eiﬂt/ll +eiﬂt/l3 0 0
- 2 0 0 eim/lz + eim/l4 eiﬂ't/lz _ eim/l4
0 0 eim/lz _ eim/u eiﬂtxlz + eiﬂt/l4

The evolution of the states 1, ey, e, 1 are given by
U;(l) — %(eiﬂl‘/ll + eiﬂt/ls)l + %(eim/ll _ eim/l3)el
U/ey) = %(eiﬂl‘/’.l _ eiﬂt/b)l + %(eim/ll + eim/l3)el
Uz(€2) — %(eim‘/lz + eiﬂl‘/l4)e2 + %(eiﬂt/h _ eim,l4)].

Ut(f) — %(eim/lz _ eim/u)ez + %(eint/h + eim,l4)[

We next consider the operator T on G(C?). We know that Tis unitary and since

7(8] + iez) = i(e1 + iez), I(el - ieg) = —i(el - iez)
T +iH)=-i(l+il), I -il)=i(1-1il)

the eigenvalue i has eigenvectors \%(61 + iep) and %(1 — iJ) while the eigenvalue —i has eigenvectors \er(el —iey)

and \L@(l + i1). The projection onto the eigenspace for i is

1 0 0 i
110 1 =i O
Fo=310 i 1 0
-i 0 0 1
and the projection onto the eigenspace for —i is
1 0 0 —i
10 1 i O
Per=310 = 1 o
i 0 0 1
We now find the Hamiltonian A for the operator 7. Since In(i) = 5i and In(-i) = —5i and T = ¢™ we conclude that

A= ZIn(@) = 2 [In()Pg) + In(=)Py] = $Pe - 1Py

s

The dynamics for 7 becomes

: . T . .
Uy =™ = e'2'Py + e '2'P;y = (cos &t + isin Z)P(;) + (cos &t — isin 2P,

0O 0 0 -1

= (cos 30 + isin 5t [Py — P—y] = (cos Z6) + sin 5¢ 00 0
2 2 0] (i) 2 2lo =1 0 0

1 0 0
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cos gt 0 0 —sin %t

1 0 cos gt sin %t 0
o —sin§r cos 1 0
sin %t 0 0 cos gt

The evolution for the states 1, ey, e>, I are given by

Uy(1) = (cos 311 + (sin )1

Ui(e1) = (cos 51)1 — (sin 1)ez

Ui(ez) = (sin Z)ey + (cos Ft)er

U/(Z) = —(sin Ft)ey + (cos 51)1
We would like to point out the similarity between the operator 7 on G(C?) and the operator eje; on G(C3). The
eigenvalues of eje; are i and —i and the eigenvectors for i are %(el +iep), \/lj(eg —iT), %(1 —iejen), \%@(el +iey)
and the eigenvectors for —i are %(81 —iep), %(63 +iT), %(1 +iejen), %63(61 — iep). The dynamics for eje, are
simpler but more complicated than that of 7.

We now discuss extensions of operators from H to G(H). LetdimH = nand B € L(H). If a = (1, 2,...,ay),
a; € C we define

BY(1) = a1
B%e;) = B(ey),i=1,2,...,n
B(e1e)) = axB(ej)ej + azeiB(ej) fori, j=1,2,...,nwithi < j
B‘Z(e,-ejek) = a3 [B(e,-)e.,-ek +e;B(ejey + el-ejB(ek)]

fori, jk=1,2,...,nwithi< j <k

B“(ej e, - --e;,) = ax [Blei))ei, - ej, + e; Blej,)---ej, + -+ ej e, Ble)]

foriy,ip,...,ix=1,2,...,nwithij <ip <--- <

BY(I) = ay[B(e1)er---e,+---+ejer---Ble,)]

and extend B® to G(H) by linearity. Then B* € L(G(H)) and we call B* the a-extension of B. For example, if
a; = 0fori =1,2,...,n, we call B* the trivial extension of B and if «; = % fori = 1,2,...,n, we call B® the
simple extension of B. Notice that (8B)* = BB” for any § € C and (A + B)* = A + B® for any A, B € L(H).
However, (AB)* # A“B” in general. For example, let P € £(H) be the projection onto e¢;. Then P%(e1e2) = azeres
and P*P%(e1ey) = a/gelez # P%ejex) = (PP)¥(ejez). This also shows that if P is a projection, then P* need
not be a projection. Letting I € L(H) be the identity operator, we have [(¢; e;, - - -ei;) = jaje; e, - - - e;;. Hence,
I* € L(G(H)) is the identity operator if and only if a; = % which is equivalent to /* being a simple extension of /.

Theorem 9. If B € L(H) and a; € R, then BY € Ls(G(H)).
Proof. Let B(e;) = i Bijje;,i=1,2,...,n. Since Bis self-adjoint, we have B;; = Eﬁ. Now <e,~l e, ere), --'ejs> *
0 if and only if ¢;, -J-:-Ieik = +e,ej, - -+ e, and in both of these cases we have

<e€l e, ere;, "'€j5> - <erei1 e e, "‘ejs> (1)
We then obtain by (] that

42 = . e e . . s e e e . DECEEY . e e . T e e e s +
<eilei2 e, Blejej ejx> = [<ellelz e, Blej)ej, ejs> tooe ¥ <ellelz i €y eJHB(er)>]
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a

[

<6’i1 €iy * " g Z Bj(eej, -+ ejx> +oeet <6’i1 Ciy " Cips €y T €y Z Bsz(et)>}
L t t
s Z Bj11<eilei2 T €€yt ejs> Tt Z Bjxt<eilei2 i €yt 'ejslet>l

t

L 7
<Z Bj(enei, - eisej, - ejx> oot <Z Bji(eeiei, -~ e ejiej, - e, >l
L t t

— @ . e . c e .
—<B i€ "€ €51€ )y ejs>

(07

©

It follows that B® is self-adjoint. |

Example 5. We now illustrate the proof of Theorem @ with the example H = C3. Leta = {a, @, a3} C R
and let B € Lg(H) with B(e;) = }; Bije; so that B;; = Eﬁ. Unlike the proof of Theorem@, we treat the various
cases individually. Clearly, (ej, B¥e;) = (B%ey, e2), {e1,B%e1e2) = (B%e1,e1e3) = 0, {e1, B*T) = (B%,1) = 0,
(1,B%) = (B%1,e;) = 0. We also have
(e1e2, B°T) = a3 [{(e1e2, Bejeyes) + {e1en, e Beses) + (erer, e1eaBes)] = 0 = (B%ejep, 1)
Moreover,
(e1ez, Be1e2) = az [{e1e2, Bejey) + (e1ez, e1Bey)]
= ay [(e1e2, Brierez + Biperer + Bizezen)] + az [(e1e2, €1Baier + e1Bnes + e1By3es)]
= ax(B11 + B) = @x(By1 + Bx) = (e1e2, BYe1e2) = (BYeje, e102)
and finally
(erez, BYeje3) = az [(e1ez, Bejes) + (e1ez, €1 Bes)]
= az [e1ea, (Biie1 + Bizea + Bizes)es) + (e1ez, e1(Baier + Byen + Bazes))]
= 2By, = 2B
= azy [{(Bi1e1 + Biaea + Bizes)ea, e1e3) +(e1(Brie1 + Bunes + Bazes), eje3)]
= @y [(Bejer,,e1e3) + (e1Bey, e1e3)] = (BYejez, e1e3) O

A great simplification occurs if A € L(H) is diagonal with respect to the basis e, €3, . . ., e,. Inthis case A = i AiP;
where 4; € R and P; is the projection onto ¢;, i = 1,2,...,n. If @ = (a1, @2, ..., a,) € R" we obtain A” € LSI(ZQI(H))
with A%(1) = a1, A%e;) = A(e)) = Ajei, i =1,2,...,n,

A%(eie)) = @y [Alene; + eid(e))| = ar(di + A)eie;
A%ejejer) = a3 [A(ei)ejek + ¢jA(ej)ey + eiejA(ek)]

= CL’3(/l[ + /1‘,' + /lk)el-ejek

A(I(I) = an(/ll + /12 + -0+ /l,,)elez cet €y

The eigenvalues of A” are ay,4;, i = 1,2,...,n, aa(A; + 4)), i,j = L2,...,n, az(4; + A; + ), i, jk =
1,2,...,n...,a,(A1 +A2+- - -+ ;). The corresponding eigenvectors are the basis 1, ¢;, e;e;, e;ejey, . .., I. Considering
A“ to be the Hamiltonian for the system, the corresponding dynamics is given by
Uf(1) = ™1
Ul(ej) = e™e;
U[a(erej) — eiﬂ'afz(/lr-f-/lh)terej
U;t(erejek) — eiﬂ(t3(/1y+/1j+/1k)t

Uta/(‘z') — eiﬂ'a/n(/l]+/lz+---+/ln)tz'

erejey, ...

We close by showing that this work extends to infinite dimensional separable Hilbert spaces.
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Theorem 10. Let H be a separable infinite dimensional Hilbert space with orthonormal basis e, ez,.... Then
there exists a unique separable infinite dimensional Hilbert geometric algebra G(H) with the following properties:
(i) H € G(H), (ii) If u € H, then (i, u) = uu. (iii)) G(H) has the orthonormal basis given by

{e,-lel-z---e,-”: i1 <ipee <y, 01,00,...,0p = 1,2,...}

Proof. Let H, be the n-dimensional subspace generated by ej,e,...,e,, n = 1,2,.... Then the 2"-dimensional
Hilbert geometric algebra G(H,,) exists [14]] and G(H,) € G(H,+1), n = 1,2,.... Let Go(H) = | G(H,). For

a,b € Go(H), we have a, b € G(H,) for some n and we define (a, b) = (a, b),, in G(H,) in which casen<cll, b) does not
depend on n. It is clear that (., +) is an inner product so Go(H) is an inner product space with orthonormal basis given
by the elements listed in (iii). If G(H) is the completion of Go(H), then G(H) is the smallest Hilbert space containing
Go(H). It follows that the listed elements in (iii) form an orthonormal basis for G(H). A sequence a; € G(H) is
Cauchy if for any € > O there exists an integer N, such that i, j > N, implies ||ai —-a J” < €. We then have that
a € G(H) if and only if there exists a Cauchy sequence a; € Go(H) such that 111)1110 [la; = all = 0 so Z]Lrg a; = a. To verity
(i), letting a € H we have a = ) c;e;, ¢; € C. Then we have a = lima, = i c;e; where a, € H, C Go(H). Hence,

i=1 i=1

a € G(H) so (i) holds. We now show that G(H) is a geometric algebra. if a, b € G(H) then there exist a,, b,, € Go(H)
such that lima,, = a,lim b, = b and we can assume that a,, b, € G(H,). Letting ¢, = a,b, we have that ¢, € G(H,)
and

llch = cmll = llanby = ambull < llanby — anbpll + llanbm — ambpl|
= ”an(bn - bm)” + ||(an - am)bm”

We can consider ¢ — a,c as a linear operator on G(H,,). Since G(H},) is finite dimensional, this operator is bounded
with norm ||a,||. Since lima, = a there exists a K € R* such that ||a,|| < K for every n and similarly ||b,,]| < M for
every m, Hence,

”Cn - Cm” < Kan - bm” + M”an - am”

Therefore, ¢, is a Cauchy sequence and we define the product on G(H) by
a+b=Ilimc, =lima,b,

It follows that if a,b € Go(H), then a,b € G(H,) for some n and a « b = ab so the product a « b extends that on
Go(H). To verify (ii), suppose u € H. Then there exist u,, € H, C G(H,) C Go(H) with limu, = u. Then

u e u = limu,u, = lim (i, u,) = (i, u)

so (i1) holds. To show that G(H) is a geometric algebra, it is clear that a » b is homogeneous. To show associativity, if
a, b, c € G(H), there exists a,, b,, ¢, € Go(H) such that lima, = a, limb, = b and lim ¢,, = ¢. We then have

a+(b-+c)=1lima, . (limb, - limc,) = lima, « [lim(b,c,)] = lima,b,c, = lima,b, «limc, =a+b+c,=(a+b)-c
To show distributivity, we have
a-+(b+c)=lima, . [lim, + c,)] = lima,(b, + ¢,) = lima,b, + lima,c, =a+b+a-c

It follows that G(H) is a geometric algebra satisfying (i), (ii) and (iii). The uniqueness of G(H) is clear. Finally,
assuming the axiom of choice, it follows that a countable union of countable sets is countable. We conclude that the
orthonormal basis listed in (iii) is countable so G(H) is separable. O
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