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Corresponding to a finite dimensional Hilbert
space H with dim H = n, we define a geomet-
ric algebra G(H) with dim [G(H)] = 2n. The

algebra G(H) is a Hilbert space that contains H as a
subspace. We interpret the unit vectors of H as states
of individual fermions of the same type and G(H) as a
fermion quantum field whose unit vectors represent
states of collections of interacting fermions. We dis-
cuss creation operators on G(H) and provide their ma-
trix representations. Evolution operators provided by
self-adjoint Hamiltonians on H and G(H) are consid-
ered. Boson-Fermion quantum fields are constructed.
Extensions of operators from H to G(H) are studied.
Finally, we present a generalization of our work to
infinite dimensional separable Hilbert spaces.
Quanta 2025; 14: 48–65.

1 Basic Definitions and Preliminary
Results

Unless stated otherwise, all vector spaces are complex
and finite dimensional. Although the next three lemmas
are known, we include their proofs for completeness.

Lemma 1. Let V be a vector space with basis
f1, f2, . . . , fn. For a, b ∈ V with a =

∑
αi fi, b =

∑
βi fi,
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αi, βi ∈ C, i = 1, 2, . . . , n, define ⟨a, b⟩ =
∑
αiβi. Then

(V, ⟨•, •⟩) is a complex inner product space.

Proof. If α ∈ C, then

⟨a, αb⟩ =
∑

αi(αbi) = α
∑

αibi = α⟨a, b⟩

⟨a, b⟩ =
∑

αiβi =
∑

αiβi = ⟨b, a⟩

If c =
∑
γi fi, then a + b =

∑
(αi + βi) fi and

⟨c, a + b⟩ =
∑

γi(αi+βi) =
∑

γiαi+
∑

γiβi = ⟨c, a⟩+⟨c, b⟩

We also have

⟨a, a⟩ =
∑

αiαi =
∑
|αi|

2 ≥ 0

and ⟨a, a⟩ = 0 if and only if αi = 0, i = 1, 2, . . . , n, which
is equivalent to a = 0. □

It follows that the vector space V of Lemma 1 is a
Hilbert space with orthonormal basis f1, f2, . . . , fn. We
denote the set of linear operators on V by L(V). If
T ∈ L(V) then T f j =

∑
k

Tk j fk, Tk j ∈ C for all k, j =

1, 2, . . . , n. We say that the matrix [T ] =
[
Tk j

]
represents

the operator T . Notice that〈
fk, T f j

〉
=

〈
fk,

∑
i

Ti j fi

〉
=

∑
i

Ti j⟨ fk, fi⟩ = Tk j

so we can find Tk j explicity.

Lemma 2. (i) If
[
Tk j

]
represents T , then α

[
Tk j

]
, α ∈

C, represents αT . (ii) If
[
Tk j

]
represents T and

[
S k j

]
represents S , then

[
Tk j + S k j

]
represents T + S and the

usual matrix product
[
Tk j

] [
S k j

]
represents TS .

Quanta | DOI: 10.12743/quanta.92 July 2025 | Volume 14 | Page 48

mailto:sgudder@du.edu
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.12743/quanta.92


Proof. (i) This follows from
(αT ) f j = αT f j =

∑
k

(αTk j) fk

for all j = 1, 2, . . . , n. (ii) Since

(T + S ) f j = T f j + S f j =
∑

k

Tk j fk +
∑

k

S k j fk =
∑

k

(Tk j + S k j) fk

we have
[
Tk j + S k j

]
represents T + S . Since

(TS ) f j = T (S f j) = T

∑
k

S k j fk

 =∑
k

S k jT fk =
∑

k

S k j

∑
i

Tik fi

 =∑
i,k

TikS k j fi =
∑

i

([T ] [S ])i j fi

we have that
[
Tk j

] [
S k j

]
represents TS . □

If T ∈ L(V) we define the adjoint T ∗ ∈ L(V) by ⟨T ∗a, b⟩ = ⟨a, Tb⟩ for every a, b ∈ V .

Lemma 3. S = T ∗ if and only if
〈
S f j, fk

〉
=

〈
f j, T fk

〉
for all j, k = 1, 2, . . . , n.

Proof. If S = T ∗, then clearly
〈
S f j, fk

〉
=

〈
f j, T fk

〉
for all j, k = 1, 2, . . . , n. Conversely, suppose

〈
S f j, fk

〉
=〈

f j, T fk
〉

for all J, k = 1, 2, . . . , n. If a =
∑
α j f j, b =

∑
βk fk, then

⟨S a, b⟩ =
〈
S

∑
α j f j,

∑
βk fk

〉
=

∑
j,k

α jβk
〈
S f j, fk

〉
=

∑
j,k

α jβk
〈

f j, T fk
〉

=
〈∑

α j f j, T
∑

βk fk
〉
= ⟨a, Tb⟩ =

〈
T ∗a, b

〉
so S = T ∗. □

We say T ∈ L(V) is self-adjoint if T = T ∗. It follows from Lemma 3 that T is self-adjoint if and only if〈
T f j, fk

〉
=

〈
f j, T fk

〉
for all j, k = 1, 2, . . . , n. We denote the set of self-adjoint operators on V by LS (V). If

S , T ∈ LS (V), we write S ≤ T if ⟨a, S a⟩ ≤ ⟨a, Ta⟩ for all a ∈ V and call T ∈ LS (V) positive if T ≥ 0 where 0 is the
zero operator. We call T ∈ LS (V) an effect if 0 ≤ T ≤ I where I is the identity operator and denote the set of effects
by E(V). An operator T ∈ LS (V) is a projection if T = T 2. It is well-known that projections are effects and we call
projections sharp effects. The trace of T ∈ L(V) is tr (T ) =

∑〈
f j, T f j

〉
. We call ρ ∈ LS (V) a state if ρ ≥ 0 and

tr (ρ) = 1. The set of states is denoted by S(V). Finally, an operator T ∈ L(V) is unitary if TT ∗ = I or equivalently
T ∗ = T−1.

We think of a Hilbert space as a mathematical structure that describes a quantum mechanical system [1–3]. In
order to understand why this is so, we need to discuss states and effects on V . A state ρ ∈ S(V) corresponds to
the initial condition of a quantum system. An effect A ∈ E(V) corresponds to a yes–no(true-false) measurement or
experiment on the quantum system [3–5]. If A results in the outcome yes when it is measured, we say that A occurs
and otherwise, it does not occur. It can be shown that 0 ≤ tr (ρA) ≤ 1 and we call tr (ρA) the probability that A occurs
in the state ρ. An observable on V is a finite set of effects A = {Ax : x ∈ ΩA} where

∑
x∈ΩA

Ax = I [4, 5]. We call ΩA the

outcome set of A and when A is measured and the resulting outcome x is observed, we say that the effect Ax occurs.
If A is measured and the system is in state ρ, we call PA

ρ (x) = tr (ρAx) the probability distribution of A. Since

∑
x∈ΩA

PA
ρ (x) =

∑
x∈ΩA

tr (ρAx) = tr

ρ ∑
x∈ΩA

Ax

 = tr (ρI) = tr (ρ) = 1

we see that PA
ρ is indeed a probability measure. There is a close connection between observables and self-adjoint

operators. If A = {Ax : x ∈ ΩA} is an observable and {λx : x ∈ ΩA} ⊆ R then B =
∑

x∈ΩA λxAx is a self-adjoint operator.
Conversely, if B ∈ L(V) then by the spectral theorem [4, 5], there exist a finite number of sharp effects Ai and real
numbers λi, i = 1, 2, . . . ,m such that

∑
Ai = I and B =

∑
λiAi. Hence, A = {Ai : i = 1, 2, . . . ,m} is an observable.

There is also a close connection between self-adjoint operators and the dynamics of a quantum system. This is
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because T ∈ L(V) is unitary if and only if there exists an A ∈ LS (V) such that T = eiA [4, 5]. If A corresponds to the
Hamiltonian of a quantum system then the unitary group Ut = eiAt, t = [0,∞), describes the dynamics of the system,
where t is the time.

A state ρ is pure if it is a one-dimensional projection. In this case, there is a unit vector ψ ∈ V such that
ρ(a) = ⟨ψ, aψ⟩ for every a ∈ E(V) and we write ρ = ρψ. Since any state ρ is an affine combination of pure states(
ρ =

∑
λiρi, λi ≥ 0,

∑
λi = 1, ρi, pure

)
we shall mainly consider only pure states.

2 Geometric Algebras and Fermion Quantum Fields

We now show that if H is a complex Hilbert space that describes an individual fermion, then the geometric algebra
G(H) over H results in a fermion quantum field theory. Our definition of G(H) differs from the usual algebra in
the sense that G(H) is complex while the usual algebra is real [6–14]. Let dim H = n and let e1, e2, . . . , en be an
orthonormal basis for H. The geometric algebra G(H) over H is the complex homogeneous, associative, distribution
algebra containing H that has the basis consisting of the elements 1 ∈ C

{ei : i = 1, 2, . . . , n} ,
{
eie j : i, j = 1, 2, . . . , i < j

}{
eie jek : i, j, k = 1, 2, . . . , n, i < j < k}

...{̂
e1e2 · · · en, e1̂e2e3 · · · en, . . . , e1e2 · · · en−1̂en

}
e1e2 · · · en = I

where e1e2 · · · êi · · · en means that ei is not present. There is one additional axiom for G(H), namely, if u =
n∑

j=1
c je j ∈

H, then uu =
n∑

j=1
c2

j ∈ C.

If u =
n∑

j=1
c je j, we define ũ =

n∑
j=1

c je j. It is easy to check that

(αu + βv)∼ = αũ + βṽ

for all α, β ∈ C. If v =
∑

d je j, we obtain

uv + vu = (u + v)(u + v) − uu − vv =
n∑

j=1

(c j + d j)2 −

n∑
j=1

c2
j −

n∑
j=1

d2
j = 2

n∑
j=1

c jd j = 2⟨ũ, v⟩

Hence, ũ ⊥ v if and only if uv = −vu. It also follows that if j , k, then〈
ẽ j, ek

〉
=

〈
e j, ek

〉
= 0

so e jek = −eke j. Notice that uu = ⟨ũ, u⟩ and if u = e1 + ie2 we have the unusual situation that u , 0 but uu = 0.

Finally, we have that uu =
n∑

j=1
c2

j for all u ∈ H if and only if e je j = 1 and e jek = −eke j for all j , k.

An element of the form ei1ei2 · · · ei j , ir , is, is said to have grade j and grade (1) = 0. The set of linear
combinations of grade j basis elements is a vector subspace of G(H) called the grade j subspace and is denoted
G(H) j. By definition, 0 is considered to be every grade level because we want subspaces. Thus, G(H)0 ≈ G(H)n ≈ C

and G(H)1 = H. We see that

dimG(H) j =

(
n
j

)
=

n!
j!(n − j)!

Hence, dimG(H)0 = dimG(H)n = 1 and by the binomial formula we have

dimG(H) =
n∑

j=0

dimG(H) j =

n∑
j=0

(
n
j

)
= (1 + 1)n = 2n
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For Jk = { j1, j2, . . . , jk} with j1 < j2 < · · · < jk, ji ∈ {1, 2, . . . , n} we define e0 = 1

eJk = e j1e j2 · · · e jk ∈ G(H)k

and define J = {0, Jk : k = 1, 2, . . . , n}. We make G(H) into a Hilbert space by declaring {eJ : J ∈ J} to be an
orthonormal basis for G(H). This follows from the next corollary of Lemma 1.

Corollary 4. (G(H), ⟨•, •⟩) is a Hilbert space with orthonormal basis {eJ : J ∈ J} and inner product ⟨a, b⟩ =
∑

J∈J
αJβJ

where a =
∑

J∈J
αJeJ, b =

∑
J∈J

βJeJ.

As before, we denote the set of linear operators on G(H) by L(G (H)) and the discussion of Section 1 on operators
applies. In particular, if T ∈ L (G(H)), then TeJ =

∑
K

TKJeK, TKJ ∈ C for all K, J ∈ J and the matrix [T ] = [TKJ]

represents T . Moreover, Lemmas 2 and 3 hold. Since G(H) is an algebra that is also a Hilbert space, we call G(H) a
Hilbert algebra.

We think of G(H) as a quantum field theory describing a finite number of fermions of the same type. A basis multi-
vector v = ei1ei2 · · · eik represents a state for k fermions of the same type (k electrons or k protons or k neutrons,. . . ).
The actual state is ρv but we shall frequently abuse the notation and call any unit vector a ∈ G(H) a state when we
really mean ρa. The Pauli exclusion principle postulates that two fermions of the same type cannot exist in the same
state. This holds in the G(H) framework because if they are in the same state ei ∈ H, then the resulting state for the
pair would be eiei = 1 which we call the vacuum state. In this sense, the two particles annihilate each other. It is
interesting that three particles in the same state eieiei reduces to a single particle in the state ei.

We call the grade 0 subspace G(H)0 = C the vacuum subspace, the grade 1 subspace G(H)1 = H the one-fermion
subspace,. . . , the grade j subspace G(H) j the j-fermion subspace. The reason for this is that G(H)0 corresponds to
the states in which no fermion is present,. . . , G(H) j the states in which j fermions are present. In general, we call ei

a one-fermion state,. . . ei1ei2 · · · ei j a j-fermion state. We also have anti-fermions (anti-electrons, anti-protons,. . . ).
We call ẽi = e1 · · · êi · · · en an anti-fermion state,

(eie j)∼ = e1 · · · êi · · · ê j · · · en

a 2-anti-fermion state, etc. Notice that 1̃ = I and we call G(H)n ≈ C the anti-vacuum subspace. A fermion and its
corresponding anti-fermion annihilate each other to form the anti-vacuum state I.

If a ∈ G(H) j. ||a|| = 1, we call ρa a j-fermion state and otherwise ρa is a combination fermion state. In general, if
a ∈ G(H) with ||a|| = 1 and A ∈ E (G(H)), the probability that A occurs in the state ρa becomes

Pρa(A) = tr (ρaA) =
∑
i∈J

⟨ei, ρa(Aei)⟩ =
∑
i∈J

⟨ei, ⟨a, Aei⟩a⟩

=
∑
i∈J

⟨a, Aei⟩⟨ei, a⟩ =
∑
i∈J

⟨Aa, ei⟩⟨ei, a⟩

= ⟨Aa, a⟩ = ⟨a, Aa⟩

If a =
∑

j∈J α je j and α = (α j : j ∈ J) is the complex vector, we have

Pρa(A) =
〈∑

j∈J

α je j, A
∑
k∈J

αkek

〉
=

∑
j,k∈J

α jαk
〈
e j, Aek

〉
=

〈
α,

[
A jk

]
α
〉

3 Creation Operators

If B ∈ G(H) we define B ∈ L (G(H)) by Ba = Ba. Notice that (αB) = αB, (A + B) = A + B and (AB) = A B for all
A, B ∈ G(H). A particular example is the creation operator for a fermion in the state ei given by

Cei(a) = ei(a) = eia

The following lemma will be useful.
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Lemma 5. e1e2 · · · e je1e2 · · · e j = 1 if j = 1, 4, 5, 8, 9, 12, 13, . . . and
e1e2 · · · e je1e2 · · · e j = −1 if j = 2, 3, 6, 7, 10, 11, 14, 15, . . .

Proof. Clearly e1e1 = 1 and we have e1e2e1e2 = −e2e1e1e2 = −e2e2 = −1. Continuing, we obtain

e1e2e3e1e2e3 = e2e3e2e3 = −1

by the previous case. For j = 6 we have

e1e2e3e4e5e6e1e2e3e4e5e6 = −e2e3e4e5e2e3e4e5 = e3e4e5e3e4e5 = −1

by the previous case. For j = 7 we have

e1e2 · · · e7e1e2 · · · e7 = e2e3 · · · e7e2e3 · · · e7 = −1

by the previous case. This pattern continues. For j = 4, we have

e1e2e3e4e1e2e3e4 = −e2e3e4e2e3e4 = 1

by the j = 3 case. For j = 5, we have

e1e2e3e4e5e1e2e3e4e5 = e2e3e4e5e2e3e4e5 = 1

by the previous case. Again the pattern continues. □

Theorem 6. (i) The creation operator Cei is self-adjoint and unitary.
(ii) For J = { j1, j2, . . . , jr} ∈ J , the operator eJ is unitary and it is self-adjoint if and only if r ∈
{1, 4, 5, 8, 9, 12, 13, . . .},

Proof. (i) For J,K ∈ J we have
〈
eK,CeieJ

〉
= 0 unless eK = ±eieJ and if eK = ±eieJ, then ⟨eK, eieJ⟩ = ±1. Similarly〈

CeieK, eJ

〉
= 0 unless, eJ = ±eieK and if eJ = ±eieK, then

〈
CeieK, eJ

〉
= ±1. Also, eK = eieJ if and only if eJ = eieK and

eK = −eieJ if and only if eJ = −eieK. We conclude that〈
eK,CeieJ

〉
=

〈
CeieK, eJ

〉
for every eJ, eK so Cei = C∗ei

and Cei is self-adjoint. To show that Cei is unitary, we have

CeiCeieJ = eieieJ = eJ

for every J ∈ J . Hence, CeiC
∗
ei
= CeiCei = I so Cei is unitary. (ii) The operator eJ is unitary because eJ =

C j1C j2 · · ·C jr and the product of unitary operators is unitary. We have that eJ is self-adjoint if and only if

C j1C j2 · · ·C jr = (C j1C j2 · · ·C jr )
∗ = C∗jrC

∗
jr−1
· · ·C∗j1 = C jrC jr−1 · · ·C j1

This equality holds if and only if

(C j1C j2 · · ·C jr )
2 = C j1C j2 · · ·C jrC jrC jr−1 · · ·C j1 = 1

The result follows from Lemma 5. □

Example 1. Letting H = C2, the algebra G(H) is 4-dimensional with basis
1 grade 0

e1 e2 grade 1
I = e1e2 grade 2
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The creation operators Ce1 ,Ce2 are given by Ce1(1) = e1, Ce1(e1) = 1, Ce1(e2) = I, Ce1(I) = e2 and Ce2(1) = e2,
Ce2(e1) = −e1e2 = −I, Ce2(e2) = 1, Ce2(I) = −e1. The corresponding matrices are

M
[
Ce1

]
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 M
[
Ce2

]
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


It is clear that these matrices are unitary and self-adjoint. The operator I is given by I(1) = I, I(e1) = −e2,
I(e2) = e1, I(I) = −1. The corresponding matrix is

M
[
I

]
=


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


We conclude that I is unitary but not self-adjoint as shown in Theorem 6(ii).□

Example 2. Letting H = C3, the algebra G(H) is 8-dimensional with basis
1 grade 0

e1 e2 e3 grade 1
e1e2 e1e3 e2e3 grade 2
e1e2e3 = I grade 3

The creation operator Ce1 is given by Ce1(1) = e1, Ce1(e1) = 1, Ce1(e2) = e1e2, Ce1(e3) = e1e3, Ce1(e1e2) = e2,
Ce1(e1e3) = e3, Ce1(e2e3) = I, Ce1(I) = e2e3. The corresponding matrix is

M
[
Ce1

]
=



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


which is unitary and self-adjoint. Also, M

[
Ce2

]
, M

[
Ce3

]
are similar and are unitary, self-adjoint. The operator

e1e2 satisfies: e1e2(1) = e1e2, e1e2(e1) = −e2, e1e2(e2) = e1, e1e2(e3) = I, e1e2(e1e2) = −1, e1e2(e1e3) = −e2e3,
e1e2(e2e3) = e1e3, e1e2(I) = −e3. The corresponding matrix is

M
[
e1e2

]
=



0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0


We conclude that e1e2 is unitary but not self-adjoint as shown in Theorem 6(ii).□

We now consider the eigenvalues and eigenvectors of Cei .

Theorem 7. The eigenvalues of Cei are ±1. The normalized eigenvectors for 1 are 1√
2
(eJ + eieJ) where i < J and the

normalized eigenvectors for −1 are 1√
2
(eJ + eieJ) where i < J and the normalized eigenvectors for −1 are 1√

2
(eJ − eieJ)

where i < J. There are 2n−1 normalized eigenvectors for eigenvalue 1 and 2n−1 normalized eigenvectors for eigenvalue
−1.
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Proof. Since Cei is self-adjoint and unitary, the eigenvalues of Cei are real and have absolute value 1. Hence, the
eigenvalues λ satisfy λ = ±1. If i < J we have

Cei(eJ + eieJ) = eieJ + eieieJ = eieJ + eJ

Hence, 1√
2
(eJ + eieJ) is a normalized eigenvector for eigenvalue 1 for all J with i < J. Notice, there are 2n−1 such

eigenvectors. If i < J we have

Cei(eJ − eieJ) = eieJ − eieieJ = eieJ − eJ = −(eJ − eieJ)

Hence, 1√
2
(eJ − eieJ) is a normalized eigenvector for eigenvalue −1 for all J with i < J. Again, there are 2n−1 such

eigenvectors. Since dim [G(H)] = 2n we have found all the eigenvectors. of Cei □

Notice that when i < J we have

⟨eJ + eieJ, eJ − eieJ⟩ = ⟨eJ, eJ⟩ − ⟨eJ, eieJ⟩ + ⟨eieJ, eJ⟩ − ⟨eieJ, eieJ⟩ = 0

as it should be because eigenvectors for different eigenvalues are orthogonal.

Example 3. According to Theorem 7, if H = C2 the eigenvectors of Cei in G(H) are as follows. The J ∈ J for
which 1 < J are J = {0} and J = {2}. The resulting eigenvectors for eigenvalue 1 are

1√
2
(1 + e11) = 1√

2
(1 + e1), 1√

2
(e2 + e1e2)

and the eigenvectors for eigenvalue −1 are

1√
2
(1 − e11) = 1√

2
(1 − e1), 1√

2
(e2 − e1e2)

The corresponding matrix representations for these vectors are

1
√

2


1
1
0
0

 , 1
√

2


0
0
1
1

 , 1
√

2


1
−1
0
0

 , 1
√

2


0
0
1
−1


Applying M

[
Ce1

]
to these vector representations verify they are eigenvectors of Ce1 for eigenvalues ±1. We next

consider Ce2 . The J ∈ J for which 2 < J are J = {0} and J = {1}. The resulting eigenvectors for eigenvalue 1 are

1√
2
(1 + e21) = 1√

2
(1 + e2), 1√

2
(e1 + e2e1) = 1√

2
(e1 − e1e2) = 1√

2
(e1 − I)

and the eigenvectors for eigenvalue -1 are

1
√

2


1
0
1
0

 , 1
√

2


0
1
0
−1

 , 1
√

2


1
0
−1
0

 , 1
√

2


0
1
0
1


Applying M

[
Ce2

]
to these vector representations verify they are eigenvectors of Ce2 for eigenvalues ±1. □

Example 4. We now consider the matrix representations for the eigenvectors of Ce1 in G(H) where H = C3. The
J ∈ J for which 1 < J are J = {0} , {2} , {3} , {2, 3} the resulting eigenvectors for eigenvalue 1 are

1√
2
(1 + e1), 1√

2
(e2 + e1e2), 1√

2
(e3 + e1e3), 1√

2
(e2e3 + I)

and the eigenvectors for eigenvalue −1 are

1√
2
(1 − e1), 1√

2
(e2 − e1e2), 1√

2
(e3 − e1e3), 1√

2
(e2e3 − I)
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The corresponding matrix representations for these vectors are

1
√

2



1
1
0
0
0
0
0
0


,

1
√

2



0
0
1
0
1
0
0
0


,

1
√

2



0
0
0
1
0
1
0
0


,

1
√

2



0
0
0
0
0
0
1
1



1
√

2



1
−1
0
0
0
0
0
0


,

1
√

2



0
0
1
0
−1
0
0
0


,

1
√

2



0
0
0
1
0
−1
0
0


,

1
√

2



0
0
0
0
0
0
1
−1


As in Example 3, these vectors form an orthonormal basis for G(H). Applying M

[
Ce1

]
to these vector representations

verify they are eigenvectors of Ce1 for eigenvalues ±1. Similar results hold for Ce2 and Ce3 . □

The anti-commutant of two operator S , T is

{S , T } = S T + TS

Theorem 8. (i) If e1 , e2, then
{
Ce1 ,Ce2

}
= 0. (ii) The eigenvectors 1√

2
(eJ + eieJ), 1√

2
(eJ − eieJ), i < J form an

orthonormal basis for G(H).

Proof. (i) This follows from

Ce1Ce2a = Ce1e2a = e1e2a = −e2e1a = −Ce2Ce1a

for all a ∈ G(H). (ii) By Theorem 7, there are 2n vectors of this form. Since eigenvectors corresponding to distinct
eigenvalues of self-adjoint operators are orthogonal the first and second types are mutually orthogonal. Since
i < J1, J2, if J1 , J2 then the two terms eJ1 , eieJ1 are different than the two terms eJ2 , eieJ2 . Hence, vectors of the first
type are orthogonal to other vectors of the first type and similarly for vectors of the second type. It follows that these
vectors form an orthonormal basis for G(H). □

We now consider the creation operator Ce1 ∈ LS
(
G(C2)

)
in more detail. The operator Ce2 will be similar. Let

ψ+1, ψ+2 be the normalized eigenvectors corresponding to eigenvalue 1 and ψ−1, ψ−2 be the normalized eigenvectors
corresponding to eigenvalue −1. Let Pψ+1 be the projection onto ψ+1. Then

Pψ+11 = ⟨ψ+1, 1⟩ψ+1 =
1
2


1
1
0
0


and similarly

Pψ+1e1 =
1
2


1
1
0
0

 , Pψ+1e2 = Pψ+1I =


0
0
0
0


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We conclude that

Pψ+1 =
1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


In a similar way we have

Pψ+2 =
1
2


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1


The projection onto the eigenspace for eigenvalue 1 becomes

P+ =
1
2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


We consider P+ to be the sharp effect that occurs when a fermion in the state e1 is created.

Now let Pψ−1 be the projection onto ψ−1. Then

Pψ−11 = ⟨ψ−1, 1⟩ψ−1 =
1
2


1
−1
0
0


and similarly

Pψ−1e1 =
1
2


−1
1
0
0

 , Pψ−1e2 = Pψ−1I =


0
0
0
0


We conclude that

Pψ−1 =
1
2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


In a similar way we have

Pψ−2 =
1
2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1


The projection onto the eigenspace for eigenvalue -1 becomes

P− =
1
2


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1


We consider P− to be the sharp effect that occurs when a fermion in the state e1 is annihilated. As expected we have
P+ + P− = I. If the system is initially in the vacuum state 1 them the probability that a fermion in the state e1 is
created becomes

P1(create I1) = ⟨1, P+1⟩ =
1
2

〈
1
0
0
0

 ,

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



1
0
0
0


〉

Quanta | DOI: 10.12743/quanta.92 July 2025 | Volume 14 | Page 56

http://dx.doi.org/10.12743/quanta.92


=
1
2

〈
1
0
0
0

 ,

1
1
0
0


〉
=

1
2

In a similar way we obtain

P1(annihilate e1) = Pe1(create e1) = Pe1(annihilate e1)

= Pe2(create e1) = Pe2(annihilate e1) = PI(create e1)

= PI(annihilate e1) = 1/2

More generally, suppose the system is in the state

ψ =
α1 + βe1√
|α|2 + |β|2

Then the probability that a fermion in the state e1 is created becomes

Pψ(create e1) = ⟨ψ, P+ψ⟩ =
1

2(|α|2 + |β|2)

〈
α

β

0
0

 ,

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



α

β

0
0


〉

=
1

2(|α|2 + |β|2)

〈
α

β

0
0

 ,

α + β

α + β

0
0


〉
=

|α + β|2

2(|α|2 + |β|2)

In particular, if α = β = 1 we have Pψ(create e1) = 1
An operator A ∈ LS (G(C2)) is an e1-observable if it has the form

A = λ1Pψ+1 + λ2Pψ+2 + λ3Pψ−1 + λ4Pψ−2

where λ1, λ2, λ3, λ4 ∈ R. In particular Ce1 is an e1-observable with λ1 = λ2 = 1, λ3 = λ4 = −1. An e1-observable A
has the same eigenvectors as Ce1 with corresponding eigenvalues λ1, λ2, λ3, λ4. Its general form is

A =
1
2


λ1 + λ3 λ1 − λ3 0 0
λ1 − λ3 λ1 + λ3 0 0

0 0 λ2 + λ4 λ2 − λ4
0 0 λ2 − λ4 λ2 + λ4


If A is measured, its possible outcomes are λ1, λ2, λ3, λ4 and when the system is in the state ρ, its probability
distribution is

PA
ρ (λ1) = tr (ρPψ+1), PA

ρ (λ2) = tr (ρPψ+2)

PA
ρ (λ3) = tr (ρPψ−1), PA

ρ (λ4) = tr (ρPψ−2)

We now consider the 8-dimensional Hilbert algebra G(C3). We will establish a pattern that the reader will see
carries over to higher dimensions. As before, we consider the creation operator Ce1 ∈ LS

(
G(C3)

)
and the operators

Ce2 , Ce3 will be similar. Let ψ+1, ψ+2, ψ+3, ψ+4 be the normalized eigenvectors corresponding to eigenvalue 1 and
ψ−1, ψ−2, ψ−3, ψ−4 be the normalized eigenvectors corresponding to eigenvalue −1. The corresponding projection
operators become

Pψ+1 =
1
2



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0



Quanta | DOI: 10.12743/quanta.92 July 2025 | Volume 14 | Page 57

http://dx.doi.org/10.12743/quanta.92


Pψ+2 =
1
2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Pψ+3 =
1
2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Pψ+4 =
1
2



0 0 0 0 0 0 0 0
...

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


The projection onto the eigenspace for eigenvalue 1 becomes

P+ = Pψ+1 + Pψ+2 + Pψ+3 + Pψ+4

The −1 projection operators are

Pψ−1 =
1
2



1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0



Pψ−2 =
1
2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Pψ−3 =
1
2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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Pψ−4 =
1
2



0 0 0 0 0 0 0 0
...

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 1


The projection for eigenvalue −1 is P− = Pψ−1 + Pψ−2 + Pψ−3 + Pψ−4 .

4 Boson-Fermion Quantum Fields

We now briefly consider boson and general boson-fermion quantum field theories. Let K be an m-dimensional Hilbert
space. The corresponding r-boson Hilbert space is the Foch space [1, 2]

H = C ⊕ K ⊕ K2 ⊕ · · · ⊕ Kr

where Ki = K ⊗ K ⊗ · · · ⊗ K(i factors) and unit vectors in Ki represent states for i bosons. The vacuum space is C
and we see that we have states for 0 to r bosons. Letting k = dim H we have that

k = 1 + m + m2 + · · · + mr = 1 + m(1 + m + m2 + · · · + mr−1)

= 1 + m(k − mr) = 1 + mk − mr+1

Hence, (m − 1)k = mr+1 − 1 so k = mr+1−1
m−1 . The simplest nontrivial case is m = 2, r = 1, k = 3. We thus have one

boson with two possible basis states b1, b2 and as we shall see there are three fermions. The next simplest case is
m = 2, r = 2, k = 7. In this case we have two bosons with basis states b1, b2, b1 ⊗ b1, b1 ⊗ b2, b2 ⊗ b1, b2 ⊗ b2 and
we shall see there are 7 fermions.

Corresponding to H we have the boson-fermion quantum field G(H). This quantum field has r bosons and
k = dim H = mr+1−1

m−1 fermions. As we have seen, G(H) is a Hilbert algebra with dimension 2k. We illustrate this
quantum field for the two simple cases mentioned above. In the case m = 2, r = 1, k = 3 we have one boson and three
fermions. The bosons and fermions can interact and G(H) has 23 = 8 basis elements. The Hilbert space H = C ⊕ K
has three basis elements v, b1, b2 where v is the boson vacuum state and b1, b2 are boson states. We write the basis
states for G(H) as

1, v, b1, b2, vb1, vb2, b1b2,I

We interpret 1 as the fermion vacuum state, v is a fermion that has not interacted with a boson, bi is a fermion that
has interacted with a boson in state bi, i = 1, 2, vbi represents two fermions the first of which does not interact with a
boson and the second interacts with a boson in state bi, i = 1, 2, b1b2 represents two fermions where the first interacts
with a boson in state b1 and the second interacts with a boson in state b2. Finally I = vb1b2 is the anti-vacuum state.

Of course, the case m = 2, r = 2, k = 7 is much more complicated because we have two bosons and 7 fermions. In
this case G(H) has 27 = 128 basis elements. The basis states for H are vi, b1, b2, b1 ⊗ b1, b1 ⊗ b2, b2 ⊗ b1, b2 ⊗ b2
and the basis states for G(H) are

1, v, b1, b2, b1 ⊗ b1, b2 ⊗ b1, b2 ⊗ b2

vb1, vb2, v(b1 ⊗ b1), v(b1 ⊗ b2), v(b2 ⊗ b1), v(b2 ⊗ b2)

b1b2, b1(b1 ⊗ b1), b1(b1 ⊗ b2), b1(b2 ⊗ b1), b1(b2 ⊗ b2)

b2(b1 ⊗ b1), b2(b1 ⊗ b2), b2(b2 ⊗ b1), b2(b2 ⊗ b2)

(b1 ⊗ b1)(b1 ⊗ b2), (b1 ⊗ b1)(b2 ⊗ b1), (b1 ⊗ b1)(b2 ⊗ b2)

(b1 ⊗ b2)(b2 ⊗ b1), (b1 ⊗ b2)(b2 ⊗ b2), (b2 ⊗ b1)(b2 ⊗ b2)

vb1b2, vb1(b1 ⊗ b1), . . .
...

vb1b2(b1 ⊗ b1)(b1 ⊗ b2)(b2 ⊗ b1), . . . b1b2(b1 ⊗ b1)(b1 ⊗ b2)(b2 ⊗ b1)(b2 ⊗ b2)I
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In this case, we interpret b1 ⊗ b1 as a fermion that interacts with two bosons both of which in the state b1, b1(b1 ⊗ b1)
represents two fermions, the first of which interacts with a boson in state b1 and the second interacts with two bosons
in the state b1 ⊗ b1, vb1b2 represents three fermions, the first of which interacts with no boson, the second interacts
with a boson in state b1 and the third interacts with a boson in state b2. Higher order cases get exponentially larger.
For example, the case m = 3, r = 2, k = 13 with two bosons and 13 fermions gives G(H) with 213 = 8, 192 basis
elements.

5 Evolution Operators

An operator U on G(H) is unitary if and only if there exists a self-adjoint operator A on G(H) such that U = eiπA

where the constant π is for convenience and is not necessary [4, 5]. We define the evolution operator Ut = eiπtA,
where t ∈ [0,∞) represents the time and A is called a Hamiltonian for the system [1, 2]. If ϕ is a state on G(H), then
Ut(ϕ) gives the evolution of ϕ relative to the Hamiltonian A. If A has spectral representation A =

∑
λ jP j, λ j ∈ R,

then

Ut = eiπtA =
∑

j

eiπtλ j P j =
∑

j

[
cos(πtλ j) + i sin(πtλ j)

]
P j

For example, in G(C2), Ce1 is self-adjoint and using Ce1 as the Hamiltonian we have

Ut = eiπtCe1 =
eiπt

2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 + e−iπt

2


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 =


cos(πt) i sin(πt) 0 0
i sin(πt) cos(πt) 0 0

0 0 cos(πt) i sin(πt)
0 0 i sin(πt) cos(πt)


In particular, the states 1, e1, e2,I evolve according to

Ut(1) = cos(πt)1 + i sin(πt)e1

Ut(e1) = i sin(πt)1 + cos(πt)e1

Ut(e2) = cos(πt)e2 + i sin(πt)I

Ut(I) = i sin(πt)I2 + cos(πt)I

Another way to view this is to use the fact that Ce1 is unitary so
Ce1 = eiπA and apply the Hamiltonian A = −i

π ln Ce1 . Since
ln(−1) = iπ we have

A = −i
π ln Ce1 =

−i
π [ln(1)P+ + ln(−1)P−] = −

(
i
π

)
iπP− = P−

Hence, letting Ut = eiπtA we obtain

Ut = eiπtP− = eiπtP− =
1
2


1 + eiπt 1 − eiπt 0 0
1 − eiπt 1 + eiπt 0 0

0 0 1 + eiπt 1 − eiπt

0 0 1 − eiπt 1 + eiπt


In this case, the states 1, e1, e2,I evolve according to

U1(1) = 1
2 (1 + eiπt)1 + 1

2 (1 − eiπt)e1

Ut(e1) = 1
2 (1 − eiπt)1 + 1

2 (1 + eiπt)e1

Ut(e2) = 1
2 (1 + eiπt)e2 +

1
2 (1 − eiπt)I

Ut(I) = 1
2 (1 − eiπt)e2 +

1
2 (1 + eiπt)I
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Let A = λ1Pψ+1 + λ2Pψ+2 + λ3Pψ−1 + λ4Pψ−2 , λi ∈ R be a Ce1 observable in G(C2). The corresponding evolution
operator is

Ut = eiπtA = eiπtλ1 Pψ+1 + eiπtλ2 Pψ+2 + eiπtλ3 Pψ−1 + eiπtλ4 Pψ−2

=
eiπtλ1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 + eiπtλ2

2


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 + eiπtλ3

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 + eiπtλ4

2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1


=

1
2


eiπtλ1+eiπtλ3 eiπtλ1 − e−iπtλ3 0 0

eiπtλ1 − eiπtλ3 eiπtλ1 + eiπtλ3 0 0
0 0 eiπtλ2 + eiπtλ4 eiπtλ2 − eiπtλ4

0 0 eiπtλ2 − eiπtλ4 eiπtλ2 + eiπtλ4


The evolution of the states 1, e1, e2,I are given by

Ut(1) = 1
2 (eiπtλ1 + eiπtλ3)1 + 1

2 (eiπtλ1 − eiπtλ3)e1

Ut(e1) = 1
2 (eiπtλ1 − eiπtλ3)1 + 1

2 (eiπtλ1 + eiπtλ3)e1

Ut(e2) = 1
2 (eiπtλ2 + eiπtλ4)e2 +

1
2 (eiπtλ2 − eiπtλ4)I

Ut(I) = 1
2 (eiπtλ2 − eiπtλ4)e2 +

1
2 (eiπtλ2 + eiπtλ4)I

We next consider the operator I on G(C2). We know that I is unitary and since

I(e1 + ie2) = i(e1 + ie2), I(e1 − ie2) = −i(e1 − ie2)

I(1 + iI) = −i(1 + iI), I(1 − iI) = i(1 − iI)

the eigenvalue i has eigenvectors 1√
2
(e1 + ie2) and 1√

2
(1 − iI) while the eigenvalue −i has eigenvectors 1√

2
(e1 − ie2)

and 1√
2
(1 + iI). The projection onto the eigenspace for i is

P(i) =
1
2


1 0 0 i
0 1 −i 0
0 i 1 0
−i 0 0 1


and the projection onto the eigenspace for −i is

P(−i) =
1
2


1 0 0 −i
0 1 i 0
0 −i 1 0
i 0 0 1


We now find the Hamiltonian A for the operator I. Since ln(i) = π

2 i and ln(−i) = −π2 i and I = eiπA we conclude that

A = −i
π ln(I) = −1

π

[
ln(i)P(i) + ln(−i)P(−i)

]
= 1

2 P(i) −
1
2 P(−i)

The dynamics for I becomes

Ut = eiπtA = eiπ2 tP(i) + e−iπ2 tP(−i) = (cos π
2 t + i sin π

2 t)P(i) + (cos π
2 t − i sin π

2 t)P(−i)

= (cos π
2 t)I + i sin π

2 t
[
P(i) − P(−i)

]
= (cos π

2 t)I + sin π
2 t


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


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=


cos π

2 t 0 0 − sin π
2 t

0 cos π
2 t sin π

2 t 0
0 − sin π

2 t cos π
2 t 0

sin π
2 t 0 0 cos π

2 t


The evolution for the states 1, e1, e2,I are given by

Ut(1) = (cos π
2 t)1 + (sin π

2 t)I

Ut(e1) = (cos π
2 t)1 − (sin π

2 t)e2

Ut(e2) = (sin π
2 t)e1 + (cos π

2 t)e2

Ut(I) = −(sin π
2 t)e1 + (cos π

2 t)I

We would like to point out the similarity between the operator I on G(C2) and the operator e1e2 on G(C3). The
eigenvalues of e1e2 are i and −i and the eigenvectors for i are 1√

2
(e1 + ie2), 1√

2
(e3 − iI), 1√

2
(1− ie1e2), 1√

2
e3(e1 + ie2)

and the eigenvectors for −i are 1√
2
(e1 − ie2), 1√

2
(e3 + iI), 1√

2
(1 + ie1e2), 1√

2
e3(e1 − ie2). The dynamics for e1e2 are

simpler but more complicated than that of I.

6 Extension Operators

We now discuss extensions of operators from H to G(H). Let dim H = n and B ∈ L(H). If α = (α1, α2, . . . , αn),
αi ∈ C we define

Bα(1) = α11

Bα(ei) = B(ei), i = 1, 2, . . . , n

Bα(e1e j) = α2B(ei)e j + α2eiB(e j) for i, j = 1, 2, . . . , n with i < j

Bα(eie jek) = α3
[
B(ei)e jek + eiB(e j)ek + eie jB(ek)

]
for i, j, k = 1, 2, . . . , n with i < j < k

...

Bα(ei1ei2 · · · eik ) = αk
[
B(ei1)ei2 · · · eik + ei1 B(ei2) · · · eik + · · · + ei1ei2 · · · B(eik )

]
for i1, i2, . . . , ik = 1, 2, . . . , n with i1 < i2 < · · · < ik

...

Bα(I) = αn [B(e1)e2 · · · en + · · · + e1e2 · · · B(en)]

and extend Bα to G(H) by linearity. Then Bα ∈ L (G(H)) and we call Bα the α-extension of B. For example, if
αi = 0 for i = 1, 2, . . . , n, we call Bα the trivial extension of B and if αi =

1
i for i = 1, 2, . . . , n, we call Bα the

simple extension of B. Notice that (βB)α = βBα for any β ∈ C and (A + B)α = Aα + Bα for any A, B ∈ L(H).
However, (AB)α , AαBα in general. For example, let P ∈ L(H) be the projection onto e1. Then Pα(e1e2) = α2e1e2
and PαPα(e1e2) = α2

2e1e2 , Pα(e1e2) = (PP)α(e1e2). This also shows that if P is a projection, then Pα need
not be a projection. Letting I ∈ L(H) be the identity operator, we have Iα(ei1ei2 · · · ei j) = jα jei1ei2 · · · ei j . Hence,
Iα ∈ L(G(H)) is the identity operator if and only if α j =

1
j which is equivalent to Iα being a simple extension of I.

Theorem 9. If B ∈ LS (H) and αi ∈ R, then Bα ∈ LS (G(H)).

Proof. Let B(ei) =
n∑

j=1
Bi je j, i = 1, 2, . . . , n. Since B is self-adjoint, we have Bi j = B ji. Now

〈
ei1 · · · eik , ere j1 · · · e js

〉
,

0 if and only if ei1 · · · eik = ±ere j1 · · · e js and in both of these cases we have〈
ee1 · · · eik , ere j1 · · · e js

〉
=

〈
erei1 · · · eik , e j1 · · · e js

〉
(1)

We then obtain by (1) that〈
ei1ei2 · · · eir , B

αe j1e j2 · · · e js

〉
= αs

[〈
ei1ei2 · · · eik , B(e j1)e j2 · · · e js

〉
+ · · · +

〈
ei1ei2 · · · eik , e j1 · · · e js−1 B(e js)

〉]

Quanta | DOI: 10.12743/quanta.92 July 2025 | Volume 14 | Page 62

http://dx.doi.org/10.12743/quanta.92


= αs

〈ei1ei2 · · · eik ,
∑

t

B j1t(et)e j2 · · · e js

〉
+ · · · +

〈
ei1ei2 · · · eik , e j1 · · · e js−1

∑
t

B jst(et)
〉

= αs

∑
t

B j1t
〈
ei1ei2 · · · eik , ete j2 · · · e js

〉
+ · · ·+

∑
t

B jst
〈
ei1ei2 · · · eik , e j1 · · · e js−1et

〉
= αs

〈∑
t

B j1t(et)ei1 · · · eik , e j2 · · · e js

〉
+ · · ·+

〈∑
t

B jst(et)ei1ei2 · · · eik , e j1e j2 · · · e js−1

〉
=

〈
Bαei1ei2 · · · eir , e j1e j2 · · · e js

〉
It follows that Bα is self-adjoint. □

Example 5. We now illustrate the proof of Theorem 9 with the example H = C3. Let α = {α1, α2, α3} ⊆ R
3

and let B ∈ LS (H) with B(ei) =
∑

j Bi je j so that Bi j = B ji. Unlike the proof of Theorem 9, we treat the various
cases individually. Clearly, ⟨e1, Bαe2⟩ = ⟨Bαe1, e2⟩, ⟨e1, Bαe1e2⟩ = ⟨Bαe1, e1e2⟩ = 0, ⟨e1, BαI⟩ = ⟨Bαe1,I⟩ = 0,
⟨1, Bαe1⟩ = ⟨Bα1, e1⟩ = 0. We also have〈

e1e2, BαI
〉
= α3 [⟨e1e2, Be1e2e3⟩ + ⟨e1e2, e1Be2e3⟩ + ⟨e1e2, e1e2Be3⟩] = 0 =

〈
Bαe1e2,I

〉
Moreover,〈

e1e2, Bαe1e2
〉
= α2 [⟨e1e2, Be1e2⟩ + ⟨e1e2, e1Be2⟩]

= α2 [⟨e1e2, B11e1e2 + B12e2e2 + B13e3e2⟩] + α2 [⟨e1e2, e1B21e1 + e1B22e2 + e1B23e3⟩]

= α2(B11 + B22) = α2(B11 + B22) = ⟨e1e2, Bαe1e2⟩ =
〈
Bαe1e2, e1e2

〉
and finally〈

e1e2, Bαe1e3
〉
= α2 [⟨e1e2, Be1e3⟩ + ⟨e1e2, e1Be3⟩]

= α2 [⟨e1e2, (B11e1 + B12e2 + B13e3)e3⟩ + ⟨e1e2, e1(B31e1 + B32e2 + B33e3)⟩]

= α2B32 = α2B23

= α2 [⟨(B11e1 + B12e2 + B13e3)e2, e1e3⟩ +⟨e1(B21e1 + B22e2 + B23e3), e1e3⟩]

= α2 [⟨Be1e2, , e1e3⟩ + ⟨e1Be2, e1e3⟩] =
〈
Bαe1e2, e1e3

〉
□

A great simplification occurs if A ∈ L(H) is diagonal with respect to the basis e1, e2, . . . , en. In this case A =
n∑

i=1
λiPi

where λi ∈ R and Pi is the projection onto ei, i = 1, 2, . . . , n. If α = (α1, α2, . . . , αn) ∈ Rn we obtain Aα ∈ LS (G(H))
with Aα(1) = α1, Aα(ei) = A(ei) = λiei, i = 1, 2, . . . , n,

Aα(eie j) = α2
[
A(ei)e j + eiA(e j)

]
= α2(λi + λ j)eie j

Aα(eie jek) = α3
[
A(ei)e jek + eiA(e j)ek + eie jA(ek)

]
= α3(λi + λ j + λk)eie jek

...

Aα(I) = αn(λ1 + λ2 + · · · + λn)e1e2 · · · en

The eigenvalues of Aα are α1, λi, i = 1, 2, . . . , n, α2(λi + λ j), i, j = 1, 2, . . . , n, α3(λi + λ j + λk), i, j, k =
1, 2, . . . , n . . . , αn(λ1+λ2+· · ·+λn). The corresponding eigenvectors are the basis 1, ei, eie j, eie jek, . . . ,I. Considering
Aα to be the Hamiltonian for the system, the corresponding dynamics is given by

Uα
t (1) = eiπα1t1

Uα
t (e j) = eiπλ jte j

Uα
t (ere j) = eiπα2(λr+λh)tere j

Uα
t (ere jek) = eiπα3(λr+λ j+λk)tere jek, . . .

Uα
t (I) = eiπαn(λ1+λ2+···+λn)tI

We close by showing that this work extends to infinite dimensional separable Hilbert spaces.
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Theorem 10. Let H be a separable infinite dimensional Hilbert space with orthonormal basis e1, e2, . . . . Then
there exists a unique separable infinite dimensional Hilbert geometric algebra G(H) with the following properties:
(i) H ⊆ G(H), (ii) If u ∈ H, then ⟨ũ, u⟩ = uu. (iii) G(H) has the orthonormal basis given by

1

{ei : i = 1, 2, . . .}{
eie j : i < j, i, j = 1, 2, . . .

}{
eie jek : i < j < k, i, j, k = 1, 2, . . .

}{
eie jek : i < j < k, i, j, k = 1, 2, . . .

}
...{

ei1ei2 · · · ein : i1 < i2 · · · < in, i1, i2, . . . , in = 1, 2, . . .
}

...

Proof. Let Hn be the n-dimensional subspace generated by e1, e2, . . . , en, n = 1, 2, . . . . Then the 2n-dimensional

Hilbert geometric algebra G(Hn) exists [14] and G(Hn) ⊆ G(Hn+1), n = 1, 2, . . . . Let G0(H) =
∞⋃

n=1
G(Hn). For

a, b ∈ G0(H), we have a, b ∈ G(Hn) for some n and we define ⟨a, b⟩ = ⟨a, b⟩n in G(Hn) in which case ⟨a, b⟩ does not
depend on n. It is clear that ⟨•, •⟩ is an inner product so G0(H) is an inner product space with orthonormal basis given
by the elements listed in (iii). If G(H) is the completion of G0(H), then G(H) is the smallest Hilbert space containing
G0(H). It follows that the listed elements in (iii) form an orthonormal basis for G(H). A sequence ai ∈ G(H) is
Cauchy if for any ϵ > 0 there exists an integer Nϵ such that i, j ≥ Nϵ implies

∣∣∣∣∣∣ai − a j
∣∣∣∣∣∣ < ϵ. We then have that

a ∈ G(H) if and only if there exists a Cauchy sequence ai ∈ G0(H) such that lim
i→∞
||ai − a|| = 0 so lim

i→∞
ai = a. To verify

(i), letting a ∈ H we have a =
∞∑

i=1
ciei, ci ∈ C. Then we have a = lim an =

n∑
i=1

ciei where an ∈ Hn ⊆ G0(H). Hence,

a ∈ G(H) so (i) holds. We now show that G(H) is a geometric algebra. if a, b ∈ G(H) then there exist an, bn ∈ G0(H)
such that lim an = a, lim bn = b and we can assume that an, bn ∈ G(Hn). Letting cn = anbn we have that cn ∈ G(Hn)
and

||cn − cm|| = ||anbn − ambm|| ≤ ||anbn − anbm|| + ||anbm − ambm||

= ||an(bn − bm)|| + ||(an − am)bm||

We can consider c→ anc as a linear operator on G(Hn). Since G(Hn) is finite dimensional, this operator is bounded
with norm ||an||. Since lim an = a there exists a K ∈ R+ such that ||an|| ≤ K for every n and similarly ||bm|| ≤ M for
every m, Hence,

||cn − cm|| ≤ K ||bn − bm|| + M ||an − am||

Therefore, cn is a Cauchy sequence and we define the product on G(H) by

a • b = lim cn = lim anbn

It follows that if a, b ∈ G0(H), then a, b ∈ G(Hn) for some n and a • b = ab so the product a • b extends that on
G0(H). To verify (ii), suppose u ∈ H. Then there exist un ∈ Hn ⊆ G(Hn) ⊆ G0(H) with lim un = u. Then

u • u = lim unun = lim ⟨ũn, un⟩ = ⟨ũ, u⟩

so (ii) holds. To show that G(H) is a geometric algebra, it is clear that a • b is homogeneous. To show associativity, if
a, b, c ∈ G(H), there exists an, bn, cn ∈ G0(H) such that lim an = a, lim bn = b and lim cn = c. We then have

a • (b • c) = lim an • (lim bn • lim cn) = lim an • [lim(bncn)] = lim anbncn = lim anbn • lim cn = a • b • cn = (a • b) • c

To show distributivity, we have

a • (b + c) = lim an • [lim(bn + cn)] = lim an(bn + cn) = lim anbn + lim ancn = a • b + a • c

It follows that G(H) is a geometric algebra satisfying (i), (ii) and (iii). The uniqueness of G(H) is clear. Finally,
assuming the axiom of choice, it follows that a countable union of countable sets is countable. We conclude that the
orthonormal basis listed in (iii) is countable so G(H) is separable. □
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